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Name of the Subject : Dynamics of Machinery
Name of the Faculty : Mr.E.Venkata Reddy/ MrS.Uday Kumar
SYLLABUS
LTP
22 -
Course Code: 50312 Credits: 4

B.Tech. — IV Semester
DYNAMICS OF MACHINES
Pre-requisite: Engineering Mechanics and Kinematics of Machinery
Objectives: The objective of this subject is to know static and dynamic behavior of mechanisms
under different loading conditions.
MODULE - I: Precession [8 Periods]
Precession: Gyroscopes, effect of precession motion on the stability of moving vehicles such as motor car, motor
cycle, aero planes and ships.
MODULE-II: Static and Dynamic Force Analysis of Planar Mechanisms & Synthesis of Linkages
[14 Periods]
A: Static And Dynamic Force Analysis Of Planar Mechanisms: Introduction -Free Body Diagrams — Conditions
for equilibrium — Two, Three and Four Members — Inertia forces and D‘Alembert‘s Principle — planar rotation
about a fixed centre.
B: Synthesis Of Linkages: Three position synthesis — Four position Synthesis — Precision positions — Structural
error — Chebychev‘s spacing, Freudentein‘s equation, Problems.
MODULE - III: Clutches & Turning Moment Diagram and Fly Wheels [14 Periods]
A: Clutches: Friction clutches- Single Disc or plate clutch, Multiple Disc Clutch, Cone Clutch, Centrifugal
Clutch. Brakes and Dynamometers: Simple block brakes, internal expanding brake, band brake of vehicle.
Dynamometers — absorption and transmission types. General description and methods of operations.
B: Turning Moment Diagram and Fly Wheels: Turning moment — Inertia Torque connecting rod angular velocity
and acceleration, crank effort and torque diagrams — Fluctuation of energy — Fly wheels and their design.
MODULE - IV: Balancing & Vibration [14 Periods]
A: Balancing: Balancing of rotating masses Single and multiple — single and different planes. Balancing of
Reciprocating Masses- Primary, Secondary, and higher balancing of reciprocating masses. Analytical and
graphical methods.Unbalanced forces and couples — examination of —V’ multi cylinder in line and radial engines
for primary and secondary balancing, locomotive balancing.
B: Vibration: Free Vibration of mass attached to vertical spring — Simple problems on forced damped vibration,
Vibration Isolation & Transmissibility Whirling of shafts, critical speeds, torsional vibrations, two and three rotor
systems.
MODULE - V: Governers [10 Periods]
Governers: Watt, Porter and Proell governors. Spring loaded governors — Hartnell and hartung with auxili ary
springs. Sensitiveness, isochronism and hunting.

TEXT BOOKS :

1. Theory of Machines / S.S Ratan/ Mc. Graw Hill Publ.
2. Theory of Machines / Jagadish Lal & J.M.Shah / Metropolitan.
REFERENCES:

1. Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS) Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday

kumar
2. Theory of Machines / Shiegly / MGH
3. Theory of Machines / Thomas Bevan / CBS Publishers
4, Theory of machines / Khurmi/S.Chand.

COURSE OUTCOME:

1. After completion of the course, students will be able to:

2. Understand the concept of gyroscope and understand and analyze the effect of precision on different types of
vehicles.

3. Learn the concept of free body diagram, preparing of free body diagram and can do the analysis of members which
are subjected to different types of forces and do the synthesis of linkages.

4. Learn the concepts of clutches, brakes and dynamometers and able to analyze various types of clutches, brakes,
dynamometers and learn the concept of turning moment diagram and its analysis for various types of engines and
design the flywheels.

5. Know various types of forces that are acting on the rotating masses and necessity of balancing and balancing of
various types of engines and their analysis and learn the concept of vibrations and get depth knowledge about
different types of vibrations.

6. Learn the concept of governors and analyze various types of governors and get familiar with various terms associated

with governors.
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MODULE-1

PRECESSION

Introduction

‘Gyre’ is a Greek word, meaning ‘circular motion’ and Gyration means the whirling motion. A
gyroscope is a spatial mechanism which is generally employed for the study of precessional
motion of a rotary body. Gyroscope finds applications in gyrocompass, used in aircraft, naval
ship, control system of missiles and space shuttle. The gyroscopic effect is also felt on the
automotive vehicles while negotiating a turn.

A gyroscope consists of a rotor mounted in the inner gimbal. The inner gimbal is
mounted in the outer gimbal which itself is mounted on a fixed frame as shown in Fig.. When the
rotor spins about X-axis with angular velocity o rad/s and the inner gimbal precesses (rotates)
about Y-axis, the spatial mechanism is forced to turn about Z-axis other than its own axis of
rotation, and the gyroscopic effect is thus setup. The resistance to this motion is called

gyroscopic effect.

ANGULAR MOTION

A rigid body, (Fig.) spinning at a constant angular velocity o rad/s about a spin axis
through the mass centre. The angular momentum ‘H’ of the spinning body is represented by a
vector whose magnitude is ‘lo’. I represents the mass amount of inertia of the rotor about the

axis of spin.
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The direction of the angular momentum can be found from the right hand screw rule or
the right hand thumb rule. Accordingly, if the fingers of the right hand are bent in the direction of

rotation of rotor, then the thumb indicates the direction of momentum.

GYROSCOPIC COUPLE

Consider a rotary body of mass m having radius of gyration & mounted on the shaft
supported at two bearings. Let the rotor spins (rotates) about X-axis with constant angular
velocity o rad/s. The X-axis is, therefore, called spin axis, Y-axis, precession axis and Z-axis, the

couple or torque axis (Fig.).

Y
Precession

axis Z
4 ) /J"' Couple axis

(a) ()

The angular momentum of the rotating mass is given by,
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H=mk o =Io
Now, suppose the shaft axis (X-axis) precesses through a small angle 80 about Y-axis in
the plane XOZ, then the angular momentum varies from H to H + 8H, where dH is the change in
the angular momentum, represented by vector ab [Figure 15.2(b)]. For the small value of angle

of rotation 50, we can write

ab = pa x 68
oH = H x 68
= [wdd

However, the rate of change of angular momentum is:
C=® o tim (f‘"‘sﬂ)

dr  &—al &

d8
=l —
dr

C=lowp

Direction of Spin vector, Precession vector and Couple/Torque vector with

forced precession
To determine the direction of spin, precession and torque/couple vector, right hand screw
rule or right hand rule is used. The fingers represent the rotation of the disc and the thumb shows

the direction of the spin, precession and torque vector (Fig.).
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The method of determining the direction of couple/torque vector is as follows

Case (i):

Consider a rotor rotating in anticlockwise direction when seen from the right (Fig.5 and
Fig. 6), and to precess the spin axis about precession axis in clockwise and anticlockwise
direction when seen from top. Then, to determine the active/reactive gyroscopic couple vector,
the following procedure is used.

e Turn the spin vector through 900 in the direction of precession on the XOZ plane

e The turned spin vector will then correspond to the direction of active gyroscopic
couple/torque vector

e The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector
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Case (ii):
Consider a rotor rotating in clockwise direction when seen from the right (Fig.7 and Fig. 8), and
to precess the spin axis about precession axis in clockwise and anticlockwise direction when seen
from top. Then, to determine the active/reactive gyroscopic couple vector,
e Turn the spin vector through 900 in the direction of precession on the XOZ plane
e The turned spin vector will then correspond to the direction of active gyroscopic
couple/torque vector

o The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector
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The resisting couple/ reactive couple will act in the direction opposite to that of the gyroscopic
couple. This means that, whenever the axis of spin changes its direction, a gyroscopic couple is

applied to it through the bearing which supports the spinning axis.

GYROSCOPIC EFFECT ON SHIP

Gyroscope is used for stabilization and directional control of a ship sailing in the rough
sea. A ship, while navigating in the rough sea, may experience the following three different types
of motion:

(1) Steering—The turning of ship in a curve while moving forward

(i1) Pitching—The movement of the ship up and down from horizontal position in a

vertical plane about transverse axis

(iii)Rolling—Sideway motion of the ship about longitudinal axis

For stabilization of a ship against any of the above motion, the major requirement is that
the gyroscope shall be made to precess in such a way that reaction couple exerted by the rotor
opposes the disturbing couple which may act on the frame.

Ship Terminology

(1) Bow — It is the fore end of ship

(i1) Stern — It is the rear end of ship

(iii) Starboard — It is the right hand side of the ship looking in the direction of motion

(iv) Port — It is the left hand side of the ship looking in the direction of motion
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Consider a gyro-rotor mounted on the ship along longitudinal axis (X-axis) as shown in
Fig.10 and rotate in clockwise direction when viewed from rear end of the ship. The angular
speed of the rotor is o rad/s. The direction of angular momentum vector oa, based on direction of
rotation of rotor, is decided using right hand thumb rule as discussed earlier. The gyroscopic
effect during the three types of motion of ship is discussed.
Gyroscopic effect on Steering of ship
(i) Left turn with clockwise rotor

When ship takes a left turn and the rotor rotates in clockwise direction viewed from

stern, the gyroscopic couple act on the ship is analyzed in the following way.
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Note that, always reactive gyroscopic couple is considered for analysis. From the above
analysis (Fig.), the couple acts over the ship between stern and bow. This reaction couple tends

to raise the front end (bow) and lower the rear end (stern) of the ship.

(ii) Right turn with clockwise rotor

When ship takes a right turn and the rotor rotates in clockwise direction viewed from
stern, the gyroscopic couple acts on the ship is analyzed (Fig 14). Again, the couple acts in
vertical plane, means between stern and bow. Now the reaction couple tends to lower the bow of

the ship and raise the stern.
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(iii) Left turn with anticlockwise rotor

When ship takes a left turn and the rotor rotates in anticlockwise direction viewed from

stern, the gyroscopic couple act on the ship is analyzed in the following way (Fig.).
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The couple acts over the ship is between stern and bow. This reaction couple tends to

press or dip the front end (bow) and raise the rear end (stern) of the ship.
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(iv) Right turn with anticlockwise rotor
When ship takes a right turn and the rotor rotates in anticlockwise direction viewed
from stern, the gyroscopic couple act on the ship is according to Fig 20. Now, the reaction couple

tends to raise the bow of the ship and dip the stern

STAH BOARD

=1 g

|/ el ROV

\mow 7 TOR VIEA z ’“\"H”
or i AE
aRE ™ AFT

A ks /
\t\F‘- e ==
i Uﬁ& 8 B
o | )8
- S Pas
Z -
i
o
&
o
i
Iﬁf
oo
ACTIVE G‘fROSl‘.DP'.E.
COUPLE
it e <8
-
el
BV " -
> i REACTIVE GYROSCOMG i
FORE e ovm |
i



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS) Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday
kumar

Gyroscopic effect on Pitching of ship
The pitching motion of a ship generally occurs due to waves which can be approximated

as sine wave. During pitching, the ship moves up and down from the horizontal position in

vertical plane (Fig. )

Let 8 = angular displacement of spin axix from its mean equilibrium position
A = amplitude of swing
i i 2
(= i X —)
{= angle in degree 360°
and ey = angular velocity of simple hormonic motion | = 2r
time period
The angular motion of the rotor is given as
B = A sin oy
, df
Angular velocity of precess: W, =k

i
=—{(A sin axf)
dr o

or @), = Adly COS oyl

The angular velocity of precess will be maximum when cos ay = 1

or m,lrmut - Arﬂﬂ
= ',1. ' E
!
Thus the gyroscopic couple: C=1lwa,

Consider a rotor mounted along the longitudinal axis and rotates in clockwise direction
when seen from the rear end of the ship. The direction of momentum for this condition is shown

by vector ox (Fig.24). When the ship moves up the horizontal position in vertical plane by an



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS) Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday
kumar

angle 80 from the axis of spin, the rotor axis (X-axis) processes about Z- axis in XY-plane and
for this case Z-axis becomes precession axis. The gyroscopic couple acts in anticlockwise
direction about Y-axis and the reaction couple acts in opposite direction, i.e. in clockwise
direction, which tends to move towards right side (Fig.25). However, when the ship pitches

down the axis of spin, the direction of reaction couple is reversed and the ship turns towards left

side (Fig.)
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Similarly, for the anticlockwise direction of the rotor viewed from the rear end (Stern) of

the ship, the analysis may be done.
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Gyroscopic effect on Rolling of ship.
The axis of the rotor of a ship is mounted along the longitudinal axis of ship and
therefore, there is no precession of this axis. Thus, no effect of gyroscopic couple on the ship

frame is formed when the ship rolls

Gyroscopic Effect on Aeroplane
Aeroplanes are subjected to gyroscopic effect when it taking off, landing and negotiating
left or right turn in the air.
Let
® = Angular velocity of the engine rotating parts in rad/s,
m = Mass of the engine and propeller in kg,
rw = Radius of gyration in m,
I = Mass moment of inertia of engine and propeller in kg mo,
V = Linear velocity of the aeroplane in m/s,
R = Radius of curvature in m,
op =Angular velocity of precession =v/R rad/s

Gyroscopic couple acting on the aero plane=C =1 ® wp

Let us analyze the effect of gyroscopic couple acting on the body of the aero plane for

various conditions.

Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end
and Aeroplane turns towards LEFT

Tal

Direction of Vizw
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. PRECE3SN

According to the analysis, the reactive gyroscopic couple tends to dip the tail and raise

the nose of aeroplane.

Case (i1): PROPELLER rotates in CLOCKWISE direction when seen from rear
end and Aeroplane turns towards RIGHT

Tl

Direction of Visw
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According to the analysis, the reactive gyroscopic couple tends to raise the tail and dip

the nose of aeroplane.

Case (i11): PROPELLER rotates in ANTICLOCKWISE direction when seen from

rear end and Aeroplane turns towards LEFT

Tail
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The analysis indicates, the reactive gyroscopic couple tends to raise the tail and dip the

nose of aeroplane.

Ty

Case (iv): PROPELLER rotates in ANTICLOCKWISE direction when seen

from rear end and Aeroplane turns towards RIGHT
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The analysis shows, the reactive gyroscopic couple tends to raise the tail and dip the nose of

aeroplane.
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Case (v): PROPELLER rotates in CLOCKWISE direction when seen from

rear end and Aeroplane takes off or nose move upwards
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The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane toward

right

Tail

Crimactian of e

Case (vi): PROPELLER rotates in CLOCKWISE direction when seen from rear

end and Aeroplane is landing or nose move downwards
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Case (vil): PROPELLER rotates in ANTICLOCKWISE direction when seen from

rear end and Aeroplane takes off or nose move upwards
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Case (viil): PROPELLER rotates in ANTICLOCKWISE direction when seen from

rear end and Aeroplane is landing or nose move downwards

Drrmctanal View
L mnvECTon
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The analysis show, the reactive gyroscopic couple tends to turn the nose of aeroplane toward

right
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Stability of Automotive Vehicle

A vehicle running on the road is said to be stable when no wheel is supposed to leave the
road surface. In other words, the resultant reactions by the road surface on wheels should act in
upward direction. For a moving vehicle, one of the reaction is due to gyroscopic couple produced
by the rotating wheels and rotating parts of the engine. Let us discuss stability of two and four

wheeled vehicles when negotiating a curve/turn.

Stability of Two Wheeler negotiating a turn

Fig shows a two wheeler vehicle taking left turn over a curved path. The vehicle is

inclined to the vertical for equilibrium by an angle 6 known as angle of heel.

Let

m = Mass of the vehicle and its rider in kg,

W = Weight of the vehicle and its rider in newtons = m.g,

h = Height of the centre of gravity of the vehicle and rider,
rw= Radius of the wheels,

R = Radius of track or curvature,

Iw= Mass moment of inertia of each wheel,

1e = Mass moment of inertia of the rotating parts of the engine,
ow = Angular velocity of the wheels,

ot = Angular velocity of the engine rotating parts,

G = Gear ratio = we/ ow,
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v = Linear velocity of the vehicle = ww x rw,

0 = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium
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Let us consider the effect of the gyroscopic couple and centrifugal couple on the wheels.

1. Effect of Gyroscopic Couple
We know that, V=cowxrw
oE =G .owor
Angular momentum due to wheels =2 Iw ww

Angular momentum due to engine and transmission = It wg

Total angular momentum (I xw) =2 Iw ww mal) 1S

v v
= 21,—+1,G—

= (21, +GlI,)
Velocity of precession = wp
It is observed that, when the wheels move over the curved path, the vehicle is always
inclined at an angle 0 with the vertical plane as shown in Fig... This angle is known as ‘angle of
heel’. In other words, the axis of spin is inclined to the horizontal at an angle 6 , as shown in
Fig.73 Thus, the angular momentum vector I w due to spin is represented by OA inclined to OX

at an angle 0. But, the precession axis is in vertical. Therefore, the spin vector is resolved along OX.
Gyroscopic Couple,

(lw)cosB x @,
2

C, =
v

C, =—(2I, + Gl )cos8
Rr,

Note: When the engine is rotating in the same direction as that of wheels, then the positive sign

is used in the above equation. However, if the engine rotates in opposite direction to wheels, then

negative sign is used.
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Wheel Hotation Wheel Eotation

The gyroscopic couple will act over the vehicle outwards i.e., in the anticlockwise

Engiite votation

direction when seen from the front of the two wheeler. This couple tends to overturn/topple the

vehicle in the outward direction as shown in Fig...
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2. Effect of Centrifugal Couple

Centrifugal Force

Centrifugal force, F.=

Centrifugal Couple C. =F, xhcosf

C

mv?

=—— hcos8
R

Centrfugal Conple

3 ;1 N .f'f,’! _..{f.,c.s.
[/
ih Fe 1;/” i
v /) hcost _
o/, "

The Centrifugal couple will act over the two wheeler outwards i.e., in the anticlockwise
direction when seen from the front of the two wheeler. This couple tends to overturn/topple the

vehicle in the outward direction as shown in Fig.

Therefore, the total Over turning couple: C = C;+ C.
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Reactive oyro.

¥ couple ™

Cank. couple

)

"‘:—-EJ—E;"';‘ ha:-::'sl_lhﬂa
-ty -
W = g

-

C=-—(2I, +GI.,)c0s8 + 2 h cos®
Rr R

For the vehicle to be in equilibrium, overturning couple should be equal to balancing

couple acting in clockwise direction due to the weight of the vehicle and rider.

C = mgh sinf

For the stability, overturning couple must be equal to balancing couple,

2 2
~_(21,, +GI,) cosB + 7~ hcos® = mghsin
Tw

Therefore, from the above equation, the value of angle of heel (0) may be determined, so that the

vehicle does not skid. Also, for the given value of 6, the maximum vehicle speed in the turn with

out skid may be determined.
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Stability of Four Wheeled Vehicle negotiating a turn.

Consider a four wheels automotive vehicle as shown in Figure 82. The engine is mounted
at the rear with its crank shaft parallel to the rear axle. The centre of gravity of the vehicle lies

vertically above the ground where total weight of the vehicle is assumed to be acted upon.

Let

m = Mass of the vehicle (kg)

W = Weight of the vehicle (N) = m.g,

h = Height of the centre of gravity of the vehicle (m)
rw= Radius of the wheels (m)

R = Radius of track or curvature (m)

Iw= Mass moment of inertia of each wheel (kg-m2)
1e = Mass moment of inertia of the rotating parts of the engine (kg-mz)
ow = Angular velocity of the wheels (rad/s)

oE = Angular velocity of the engine (rad/s)

G = Gear ratio = we/ ow,

v = Linear velocity of the vehicle (m/s)= ww x rw,

x = Wheel track (m)

b = Wheel base (m)
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Wheel track (x) !
1

REAR WHEELS
Fly i

foa ‘

e
=

INNEE WHEELS
Wheel baze

{b)

OUTFR WHEFELS

——
!
]

I.'ll .
FRONT WHEELS”
Left turn =

(i) Reaction due to weight of Vehicle
Weight of the vehicle. Assuming that weight of the vehicle (mg) is equally distributed over four
wheels. Therefore, the force on each wheel acting downward is mg/4 and the reaction by the road

surface on the wheel acts in upward direction.

P meg
4

W

(ii) Effect of Gyroscopic couple due to Wheel
Gyroscopic couple due to four wheels is,
Cw=4 Ivo®p
(iii) Effect of Gyroscopic Couple due to Engine
Gyroscopic couple due to rotating parts of the engine

Ce=IE® op=IEG ® op
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Therefore, Total gyroscopic couple:

Ce=Cw + Ce= @ op (41w + [£G)

When the wheels and rotating parts of the engine rotate in the same direction, then

positive sign is used in the above equation. Otherwise negative sign should be considered.

Assuming that the vehicle takes a left turn, the reaction gyroscopic couple on the vehicle

acts between outer and inner wheels.

o

SHoW YECTOR

=

PRECEE

‘\
;}_A:?ular momenium
J

f
s
SPIMNAVECTOR \_7 X

I

This gyroscopic couple tends to press the outer wheels and lift the inner wheels



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS) Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday
kumar

Reactive Gyro. Couple

)

OUTER WHEELS INNER WHEELS

Due to the reactive gyroscopic couple, vertical reactions on the road surface will be
produced. The reaction will be vertically upwords on the outer wheels and vertically downwords
on the inner wheels. Let the magnitude of this reaction at the two outer and inner wheels be P

Newtons, then,

PxX= Cg
C
P==
Road reaction on each outer/Inner wheel,
P Cy
2T 2%

(iii)Effect of Centrifugal Couple
When a vehicle moves on a curved path, a centrifugal force acts on the vehicle in outward

direction through the centre of gravity of the vehicle( Fig...)

OUTER WHEELS INNER WHEFLS

Left turn
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Centrifugal force,

2 mv’
‘Fr = mw;ﬁ‘ = —
R
This force forms a Centrifugal couple.
" v’y
R

C

This centrifugal couple tends to press the outer and lift the inner

Due to the centrifugal couple, vertical reactions on the road surface will be produced. The
reaction will be vertically upwords on the outer wheels and vertically downwords on the inner

wheels. Let the magnitude of this reaction at the two outer and inner wheels be F Newtons, then,

Centrifugal Couple

" il Y

OUTEER. WHEELS

INNER WHEELS

Y

Road reaction on each outer/Inner wheel,

lo

X
2
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The reactions on the outer/inner wheels are as follows,

wa b Y v
5y i
=l : L2
F i lcﬁ t B
?
7 s
OUTER WHEELS ! INNER WHEFELS

i ¥
Ty b

Left Turm
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MODULE-II

Static and Dynamic Force Analysis of Mechanisms

Mechanisms are designed to carry out certain desired work, by producing the
specified motion of certain output member. It is usually required to find the force or
. torque to be applied on an input member. when one or more forces act on certain output
member(s). The external force may be constant or varying through the whole cycle of motion.
Calculation of input force or torque over the complete cycle will. be needed to determine the
power requirement. then the masses and moments of inertia of the members are negliglble,
static force analysis may be carried out. Otherwise, particularly at high speeds, significant
forces or torques will be required to produce linear or angular accelerations of the various
members. The same will have to be considered in the analysis. It is .also required to find the
forces at the )oTnts for proper design. These also vary depending upon the
position/configuration in the cycle.

Static analysis is carried out by the usual methods of colllnearity of forces. equlTfbrium of
forces/ moments. Input is determined as that force or moment to bring the system’ to” equilibrium. Inthe case
of dynamic systems, linear acceleration of each link (CG) and the angular accelerations of the members are
evaluated. The corresponding forces and moments are calculated (product ofacceleration and inertia).

D’Alembert’s principle is a method of applying fictitious forces / torques called inertia force /
torque, equal and opposite to the force or torque required toproduce acceleration ineach member, so asto
produce a static” condition which is called dynamic equilibrium. Then the system can be treated as static,
which permits application af techniques of static force analysis.

Dyriamlc force analysis is the evaluation of input forces or torques and joint forces considering
motion of members. Evaluation of the inertia force /torque are explained first. Methods of static force
analysis areexplained.

Dynamic Force Analysis:

Considerthe four-barchain ABCD (fig.1a). Letthejoint AbeacteduponbyaTorque T so as’tomove the
link AB at ao.angular velocity of w. Let the masses of the links AB, BC and CD be m,, mzand mm, and
moments of inertiabel, I,, andD>.

I. Draw the velocity {fig 1.b) and
acceleration diagram (fig 1.c) of the mechanism LLr\L

ii. Determine linear accelerations of the CGsofthelinks, and  © @ s
angular accelerations of links BC and CD.
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Dyn. of M/cs - Dynamic Fume Analysis - Lectura Notes- Dr.PA Sastry, MVSR Engg. College

iii.Consider link BC. Let the CG be at point G. (fig. 1.d) Force
on the link due to acceleration dgis* *2 M@XO0
Hence Inertia force - -fz
Angular acceleration =a» =2a’» / BC;
Torquet Itx« ( )

Inertia torque -tm (cw)

iv. Combine the inertia force and torque into a single force P, parallel to it, but acting at
distance h=1Q m a2 Ite m the point G. (Fig.J.d)(Verify)

v. This force equivalently replaces the inertia force and torque.

vi. Repeat the procedure for link CD. (fig.1.¢)

vii. For link AB, as there is no angular acceleration, inertia force is taken to act opposite to 1xa.
(Ifit has finite angular acceleration. given as input, it can be handled as for other links)

viii. Thus, the mechanism will be in equilibrium under the action of the forces acting on links 2
and 3 and the input torque. It is then a static system.

The torque on the crank is calculated by any of the methods of static force analysis, some of

which are explained below. 0 el
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Static Force Analysts:

Thiscanbe done by obtaining the free body diagrams (f.b.d.) for eachlink, application of equilibrium of forces or moments
and collinearity of forces, as appropriate. Either

graphical-analytical methods or vectorial approach can be adapted. \Ve review (a) Prindple of Virtual Work (b) method
of force resolution and (c) Method of superposition. {be mayalsoemployequivalent vectorlalmethods—seeJEShigley).

ConsideraMbarchain.ForcesF,(2 Fracton links 1.,3and3 atthe
points shown: It is desired to findthetorque T onlink 1, (and joint
forces) tokeep themechanism in equilibrium.

A.Principle of Virtual Work: In this method. total work done by forces and moment acting on the system causing
infinitesimal motions, is taken as zero. Itis to be noted that

the reactions at.the joints get nullified and are workfess. As such the joint forces cannot be evaluated in this method. Following
procedure is adapted:

a. Drawavelocitydiagramofthelinkageassumingunit angular velocity ofthelink AB on
which the turning moment is applied {fig.a.i).

Actual velocities are w times those drawn.

b. Find the velocity of the link at the point.of application of the external force.

¢. Measure the component of the velocity along the direction of the force applied.
1. Vz, V, are aloag F1. F.,., F> respy. (fig.a.2)
d. Work done by the force = force x velocity in
the direction of the force.
e¢. Txu+FxVixw+FzxVzw+ BHxVoxw=0.
f. FindT.

7

V(o



8 : Bv Resoluion of Forces:

Start with ’link 3.
-Fromthe fbd of link 3, let the force fr beresolved intotwo components, onealong Link 3 and other

perpendicular. (fig.b.])

-Takemoments about D,which givesfz>’_Link 2

-fz and F32' being known, taking moments about B, find f3)°. (fig.b2)

-From polygon of forces, find for (f g.b.3)

-F/and 23 components beingknown, forcepolygon. gives fi,.(fig.b.4). Link \

Fromthepolygon of forces onlinki, find f<. Sko
Tekingmomentsabout A, (fig.b.5), find T fromtheeqn.
T+F,xa+ f¢,xb. =0 X C "‘f t *)
=3 /
Fa () / 5;3,?
_— %

(b4)

(C) Method of Superposition

Inthismethod weassume that only F is present (Fm, F>-0) and findmoment M. Then assume Ftalone is present, and evaluate
M, similarly M*when only Fm is present. The momentonmember \Isthesu.m ofthemomentsM',M°.M#*.ie., theeffectofeach
force is superposed to get the condition when all forces act at the same time.

fa) Effect of .F1 alone (fig.c.i): Start with the fbd for link 1 - links 2 and 3 are 2-force
members, and joint forces are along the members. However, at joint C, force f¢, and ), act
along the respective members 2 and 3, but have to be: equal and opposite. "It is possible only

fzz=Hz=0. Hence, f) f=fn) and f,<(=ft3t 1! all be zero.
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Fiand f¢ are equal and opposite. The moment F,xa is balanced by M’. (M’ + F xa =0)

(b) F_alone acting: From the fbd of link2- Forces Fz, ! 32 (along link 3. beirtg 2-force member)
are collinear, which determines the direction of t2 fi ¢ Now complete the force polygon to
determine the magnitudes of ;2 and />2as well. (fig.c.3). Also, £53=fee

Onlink 1. /4, and fim are equal and opposite, and balanced by M* givenby M’ + f,xb =0.

(@ Force F3 on Link 3 alone (Fie. : Consider fbd of link 3. F3. 12, and f» are collinear. from which
directions o/ fttand f,, are known. Their magnitudes are known from force P !Y8 ¢ /32 ( f,,)) are
the forces acting on link 2.

Forces on link 1 are t2 and f4 . are equal and opposite (Fig.c.@, and their couple is balanced by
M*(= fmmxc).

The turning moment required under the simultaneous action of all forces is

T=M+ M) + M’

Note: Eachjointforceis similarly obtained by superimposingtheparticular joint force
Obtained in the 3 cases.




DYNAMIC FORCE ANALYSIS:

It is defined as the study of the force at the pin and guiding surfaces and the forces
causing stresses in machine parts, such forces being the result of forces due to the
motion of each part in the machine. The forces include both external and inertia
forces. Inertia forces in high speed machines become very large and cannot be
neglected, Ex: Inertia force of the piston of an automobile travelling at high speed
might be thousand times the weight of the piston. The dynamic forces are
associated with accelerating masses.

If each link, with its inertia force and force applied to the link can be considered
to be in equilibrium, the entire system can also be considered to be in equilibrium.

Determination of force & couple of a link

(Resultant effect of a system of forces acting on a rigid body)

F .
? G =c .g point

F,& F,: equal and opposite forces
acting through G (Parallel to F)

F: Resultant of all the forces acting

on the rigid body.

h: perpendicular distance between F
F, & G.

m = mass of the rigid body

Note: F,=F, & opposite in direction; they can be cancelled with out affecting the
equilibrium of the link. Thus, a single force ,F* whose line of action is not

through G, is capable of producing both linear & angular acceleration of CG of
link.

F and F, form a couple.
T=F x h =1 a = mk® a (Causes angular acceleration) .............. (1)
Also, F; produces linear acceleration, f.

Fi=mf

Using 1 & 2, the values of ,f* and ,,a" can be found out if F;, m, k & h are known.



D’Alembert’s principle:

Final design takes into consideration the combined effect of both static and
dynamic force systems. D'Alembert’s principle provides a method of converting
dynamics problem into a static problem.

Statement:

The vector sum of all external forces and inertia forces acting upon a rigid body is
zero. The vector sum of all external moments and the inertia torque, acting upon
the rigid body is also separately zero.

In short, sum of forces in any direction and sum of their moments about any point
must be zero.

Inertia force and couple:

Inertia: Tendency to resist change either from state of rest or of uniform motion

Let ,R“ be the resultant of all the external forces acting on the body, then this ,R"
will be equal to the product of mass of the body and the linear acceleration of c.g
of body. The force opposing this ,R" is the inertia force (equal in magnitude and
opposite in direction).

(Inertia force is an Imaginary force equal and opposite force causing
acceleration)

If the body opposes angular acceleration () in addition to inertia force R, at its
cg, there exists an inertia couple Ig x a, Where Ig= M I about cg. The sense of
this couple opposes a. i.e., inertia force and inertia couple are equal in magnitude
to accelerating force and couple respectively but, they act in opposite direction.

Inertia force (F;)) =M x f,
(mass of the rigid body x linear acceleration of cg of body)

MMI of the rigid body about an axis  |Angular

Inertia couple (Ci)=I x o, perpendicular to the plane of motion celeration

Dynamic Equivalence:

The line of action of the accelerating force can also be determined by replacing
the given link by a dynamically equivalent system. Two systems are said to be
dynamically equivalent to one another, if by application of equal forces, equal
linear and angular accelerations are produced in the two systems.

5



1.e., the following conditions must be satisfied;

1) The masses of the two systems must be same.
i1) The cg™s of the two systems must coinside.
ii1) The moments of inertia of the two systems about same point must be

equal, Ex: about an axis through cg.

Rigid body G= c.g.
m = mass of the rigid body

ko = radius of gyration about
an axis through G and
perpendicular to the plane

A

Now, it is to be replaced by dynamically equivalent system.

— masses of dynamically
msi, mz

equivalent system at a; & a;

from G (respectively)

my

As per the conditions of dynamic equivalence,

m=m;+m .. (a)

= .. (b

A2 a2 (D)
g 11 22

Substituting (b) in (c),
mk, =(ma)a+(ma)a;

=a; a, (my*+m,) = a; a, (m) 7
. 2 2
1e., k’=aa [/ =mk”ork”= g]_
g 12 g g g m
I
or f=a a

12



Inertia of the connecting rod:

1
- g

B! Connecting rod to be replaced by a
A A massless link with two  point
@ \e, masses m, & m,.

]

| a = i
|I —y m = Total mass of the CR mp& mq point
' ( masses at B& D.

= G| b
— e +—
L b 4]
1 |1
"My (44”1
m,+ m;=m -=
my,xb=my,xd — — (i)
Substituting (ii) in (i);
(b
T+Lmbxg):m
m (1+b\=m or m (b+d\:m
"Ud A
[,
orm, =ml p4d -—()
Fp Y
o my=m| | -
Similarly; b+d
\ J

Also; I=mb*+md}?

zm(b_d._alw b2 +m({95_dw d2 [ from (1) & (2)]

' / (b+d)

I=mbd | | = mbd

\ b+d )

Then, mk; =mbd, (since [ = m/’gg2 )

2
k2=bd



The result will be more useful if the 2 masses are located at the centers of bearings A & B.
Let m, = mass at A and dist. AG=a

Then,

m,+ m,=m

m=m( =m ; ( Since, a +b =I)
Similarly, b La_+5 T
I = maa2+ m? —  —mbd (Proceeding on similar

lines it can be proved)
Assuming; a>d, 1'>1

i.e., by considering the 2 masses A & B instead of D and B, the inertia couple (torque) is increased from
the actual value. i.e., there exists an error, which is corrected by applying a correction couple (opposite
to the direction of applied inertia torque).

The correction couple,
AT=a,.(mab— mbd)
=mb a, (a—d)
=mba.[(@a+b)—(b+d)]
=mba,., (I-L1) because (b+d=1L)
As the direction of applied inertia torque is always opposite to the direction of angular acceleration, the

direction of the correction couple will be same as that of angular acceleration i.e., in the direction of
decreasing angle .

WPl %
o G| —— - - -
77 $



Dynamic force Analysis of a 4 — link mechanism.

/3 _<QB

;7 \ OABC is a 4-bar mechanism. Link

A Q// " 4 2 rotates with constant m,. G,, G; &

./ o /T\ Gy are the cgs and M, M, & M; the

g S— (,-4‘, masses of links 1, 2 & 3
b?((;:" \\ . respectively.

What is the torque required, which, the shaft at o must exert on link 2 to give the
desired motion?

1. Draw the velocity & acceleration polygons for determing the linear
acceleration of G,, G; & Gg.

2. Magnitude and sense of a3 & a4 (angular acceleration) are determined
using the results of step 1.

b’ Agy
To determine inertia forces and couples
Link 2
F, = accelerating force (towards O)

Fl.2 = inertia force (away from O)

Since m, is constant, o, = 0 and no
inertia torque involved.




Link 3

Linear acceleration of G; (i.e., AG3)
is in the direction of Og; of
acceleration polygon.

F, = accelerating force

F} = «'11,{3(4(’";

Inertia force F,,acts in opposite direction. Due to o, there must be a resultant
torque T3 = I; a3 acting in the sense of a3 (I3 1s MMI of the link about an axis
through G, perpendicular to the plane of paper). The inertia torque 7}, is equal
and opposite to T;,

A
F 5 can replace the inertia force F » and inertia torque 7. F s tangent to circle of radius h 3
i3

from Gg, on the top side of it so as to oppose the angular acceleration os. h3 = Lo

ML AG,
Link 4

B
La
hd = 444
M ,AG,

T,= 1,04

Fy=MAgy
Problem 1 :

It is required to carryout dynamic force analysis of the four bar mechanism shown in the figure.

©, =20rad /s (cw), o, = 160 rad/s” (cw)



0OA=250mm, OG,= 110mm, AB=300mm, AG;=150mm, BC=300mm, CG,=140mm, OC=550mm, ZAOC = 60°

The masses & MMI of the various members are

Link Mass, m MMI (I, Kgm®)
2 20.7kg 0.01872
3 9.66kg 0.01105
4 23.47kg 0.0277

Determine i) the inertia forces of the moving members

i) Torque which must be applied to @
o
F.
bl
\\ b
,  Acceleration
!+ Ppolygon
.............................. "
a
O (a)Scale: 1 cm =10 cms b ,{BA I cm =_S ;?)lfn/ 2
sec

A) Inertia forces:

(i) (from velocity & acceleration analysis)

V,=250%20; 5m/s, Ve=4dmls, Vyz=47T5m/s

a, =250%20";100m/ s, a'=250x160; 40m/ s®
Therefore; )
7?2 4 2
A2=_Cz W=53.3.3 m/s
e (4.75)° )
A, == ——=7521m/s
B, 0.3

Og, =A,, =48 m/ s*; Og,= AG, =120m/ s*
0g4A-—rAG4 =65.4m/s*

a= 19 2

3 _BAa=__=633rad/s
4B 03

a = 129 2

s —B=__ _=430rad/s
CB 03



Inertia forces (accglgmtl’ng forces)
F.,=m A~ ~ x48=993.6 N (in thedirection ongZ))
9.81
Fo, =my Ag=9.66 x 120 =1159.2 N (in the direction of Og,)

=F;,=myA;,=23.47 x 65.4 =1534.94 N (in thedirection of Og,)

:IGz(%) _(0.01872 x160) _ 1301 %1073 m

hz
F, 993.6
h3 :IG3 (a3) _(001 105 X633) =6.03 x 10—4 m
F, 1159.2
o _16a(%) (00277 x430) 776 %1073 m
47 F 1534.94
4
The inertia force F,,, F5 & F;, have magnitudes equal and direction opposite to the respective

accelerating forces and will be tangents to the circles of radius hy, h; & h, from G,, G; & Gy so as to oppose a, 03 & 04,

Fy,=993.6N ,F,=11592N F,,=1534.94N

Further, each of the links is analysed for static equilibrium under the action of all external force on that link plus the
inertia force.

Dvnamic force analvsis of a slider crank mechanism.

F,= load on the piston

Link mass MMI
2 mp Iz
3 m3 Iz
= 4 my -

o, assumed to be constant
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Steps involved:
1. Draw velocity & acceleration diagrams
2. Consider links 3 & 4 together and single FBD written (elimination F,, & F;)

3. Since, weights of links are smaller compared to inertia forces, they are neglected unless
specified.
4. Accelerating forces F2 R F. 3 & F 4 actin the directions of respective acceleration vectors

Og, Og; & Og ,

Magnitudes: F,=m,AG, F,=m;AG, F,=m,A,
F.,=F,, F,=F, ,F,, = F, (Opposite in direction)
E Fia b o— 15 o
(3 3
; M,
F, 3 is tangent to the circle with

1

hy radius on the RHS to oppose & 3

Solve for T, by solving the configuration for both static & inertia forces.

Dynamic Analysis of slider crank mechanism (Analytical approach)

Displacement of piston

pll s sl

[\ b

X = displacement from IDC

x=BB, = BO-B,0

( i \ + A,0)
=(I+7) — (Icos¢ +rcosB) LSiH ce, = nJ

=(nr+r) — (rncos¢@ +rcosb)

:r[(n+1)— (ncos¢ +cos€)] cosg = 1—sin® ¢



=r[(n+l)— (yn* —sin’ 6 +cos6)]
:r[(l—cosé?) +(n —/n* —sin? 6)]

(similary !>>7.— = n >>1 & max valueof sin 6=1)
r
sJn? =sin? 6 > n* or n),
x=r (1-cosb)

This represents SHM and therefore Piston executes SHM.

Velocity of Piston:
yo B _dx do
d dO di
dl lao
_|r(1-cos@)+n—(n* —sin26) 2 |
do . | dt 1
=r' 0+sinf+0— (n*—sin20)"?(2sinfcosh)' w
| 2
F sin26 1
=rwlsin@ + |

|L 2\/nz—sin2 Hh

. 2 2
Since, n” >>sin” 0,

.

T v=rw sin@+

! on |

sin 26 |

sin26
Since n is quite large, can be neglected.

2n

v=rwsnd

11

_ Il_y_z
12
(rsin 0)*
llz—
sin” @
_ >

=.J

JJn? —sin? 6

1
n



Acceleration of piston:

dv dv do
a =

i do di

I o

cos28 |

=rw cosf+
| n

If n is very large;

a=rm’cosb

When 6 =0, at IDC,
1
YA

=
L n)
When 0 = 180, at 0DC,

a=rw

a:ra)Z(—1+1\

| — |
\ n)

a:ra)| |
. n)

Angular velocity & angular acceleration of CR (o)

y=Isin g=rsin 6

, sin @
sin ¢ =

n

Differentiating w.r.t time,

cos ¢ iéé: I_%S_edﬁ

dt n dt
cost
C = a} 1
n—dn2 —sin? ¢
n

(as in SHM)

zAfrle = 180, when the direction is reversed,

dg _

dt

do
dt

1 .
cosp= —+/n* —sin’ 6
n

12
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cos@
Rt H] . —
c .
\/n* —sin 2

o _dw, do.do
¢ dt do dt

drl ]
= —| cosf (n*—sin* 6) 2 | @
do| |
I . 1
=w? | cos@—(n"=sin” 0) 2(—2 sin @ cosd) +(n’~sin’ @) (=sin ) |

L 2 ]
! cos’ @ —(n*~sin” @) !
| |
5|
L (n*=sin® 6)2 |J

= sin? ¢9|

:
|r (n*~1) ||

|(n*~sin? @) 2 ||

=— w? sin6?|

Negative sign indicates that, ¢ reduces (in the case, the angular acceleration of CR is CW)

Engine force Analysis:

Forces acting on the engine are weight of reciprocating masses & CR, gas forces, Friction & inertia forces (due to
acceleration & retardation of engine elements)

i) Piston effort (effective driving force)
- Net or effective force applied on the piston.

In reciprocating engine:

The reciprocating parts (masses) accelerate during the first half of the stroke and the inertia forces tend to resist the same.
Thus, the net force on the piston is reduced. During the later half of the stroke, the reciprocating masses decelerate and
the inertia forces oppose this deceleration or acts in the direction of applied gas pressure and thus effective force on
piston is increased.

In vertical engine, the weights of the reciprocating masses assist the piston during out stroke (down) this in creasing the

piston effort by an amount equal to the weight of the piston. During the in stroke (up) piston effect is decreased by the
same amount.

Force on the piston due to gas pressure; Fp = P; A; — P, P; = Pressure

on the cover end, P, = Pressure on the rod
A, = area of cover end, A, = area of rod end, m = mass of the reciprocating parts.
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Inertia force (F;) =m a

=mrw? (C0s6’+ Cos28)

| |
\ no )

(Opposite to acceleration of piston)

Force on the piston F=F; - F;
(if F¢ frictional resistance is also considered) F = Fp — F;
_F,

In case of vertical engine, weight of the piston or reciprocating parts also acts as force.

F=Fp+mg7Fi7Fi

ii) Force (Thrust on the CR)

F. = force on the CR

Equating the horizontal components;

F Cos¢p=F or F
c CC0S2¢

iii) Thrust on the sides of the cylinder
It is the normal reaction on the cylinder walls

F=Fsin ¢="Ftan ¢

iv) Crank effort (T)

It is the net force applied at the crank pin perpendicular to the crank which gives the required TM on the crank shaft.

F,xr =F,rsin(0+ @)

F, = F_ sin(0+¢)

F¢ sin( 6 +¢)

COS



v) Thrust on bearings (F,)

The component of F¢ along the crank (radial) produces thrust on bearings

F =F. Cos(6+ ¢)= ul
Cos

Cos(0+ @)
y 0s 1)

vi) Turning moment of Crank shaft

I'=Fxr

r

sin(@+¢@) xr = £ (sin @+ cos¢ + cos@sin @)
cos

COS

=Fxr (sin 6+cosl sin ¢)
N cos¢

Proved earlier

_ |( SiIlH 1 | =1 3 —
F x rlsin @+cos@ | cosg=_ /2 _gin? 6
L n l\/n2 —sin 2@ n
p )
Sln¢=sm9
n
( sin2 @ \|
=Fxr'sin@+
2\/n2—sin29 )

Also,
rsin(@+ @) = OD cos¢

I'=Fxr

. rsin (6+ @)

COS

F
cos¢

.OD cos¢



T'=F xOD

UNIT -1
Clutches, Brakes& Dynamometers

Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and machines which
must be started and stopped frequently. Its application is also found in cases in which power is to be delivered to
machines partially or fully loaded. The force of friction is used to start the driven shaft from rest and gradually
brings it up to the proper speed without excessive slipping of the friction surfaces. In automobiles, friction clutch is
used to connect the engine to the driven shaft. In operating such a clutch, care should be taken so that the friction
surfaces engage easily and gradually brings the driven shaft up to proper speed. The proper alignment of the bearing
must be maintained and it should be located as close to the clutch as possible. It may be noted that
1. The contact surfaces should develop a frictional force that may pick up and hold the load with reasonably low
pressure between the contact surfaces.
2. The heat of friction should be rapidly dissipated and tendency to grab should be at a minimum.
3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform distribution of pressure.

The friction clutches of the following types are important from the subject point of view :

1. Disc or plate clutches (single disc or multiple disc clutch),

2. Cone clutches, and

3. Centrifugal clutches.
We shall now discuss, these clutches, in detail, in the following pages. It may be noted that the disc and

cone clutches are based on the same theory as the pivot and collar bearings.

Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both sides are faced
with a friction material (usually of Ferrodo). It is mounted on the hub which is free to move axially along the splines
of the driven shaft. The pressure plate is mounted inside the clutch body which is bolted to the flywheel. Both the
pressure plate and the flywheel rotate with the engine crankshaft or the driving shaft. The pressure plate pushes the
clutch plate towards the flywheel by a set of strong springs which are arranged radially inside the body. The three
levers (also known as release levers or fingers) are carried on pivots suspended from the case of the body. These are
arranged in such a manner so that the pressure plate moves away from the flywheel by the inward movement of a

thrust bearing. The bearing is mounted upon a forked shaft and moves forward when the clutch pedal is pressed.

When the clutch pedal is pressed down, its linkage forces the thrust release bearing to move in towards the
flywheel and pressing the longer ends of the levers inward. The levers are forced to turn on their suspended pivot
and the pressure plate moves away from the flywheel by the knife edges, thereby compressing the clutch springs.
This action removes the pressure from the clutch plate and thus moves back from the flywheel and the driven shaft
becomes stationary. On the other hand, when the foot is taken off from the clutch pedal, the thrust bearing moves
back by the levers. This allows the springs to extend and thus the pressure plate pushes the clutch plate back towards

the flywheel.
5
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Ciluteh plate with
fricticn lining

The axial pressure exerted by the spring provides a frictional force in the circumferential direction when the
relative motion between the driving and driven members tends to take place. If the torque due to this frictional force
exceeds the torque to be transmitted, then no slipping takes place and the power is transmitted from the driving shaft
to the driven shaft.

Now consider two friction surfaces, maintained in contact by an axial thrust W, as shown in Fig. (a).

T = Torque transmitted by the clutch

p = Intensity of axial pressure with which the contact surfaces are held together,
r1and r2 = External and internal radii of friction faces, and

oc = Coefticient of friction.

Consider an elementary ring of radius r and thickness dr as shown in Fig. (b).

We know that area of contact surface or friction surface,
=20rdr
Normal or axial force on the ring,
™W = Pressure x Area=p x 2 [ r.dr

and the frictional force on the ring acting tangentially at radius r,

17
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F=c.™W=0cp x2[rdr
Frictional torque acting on the ring,

T,=Fxr=cpx20rdrxr=20xo .prdr

Single dise
We shall now consider the following two - .(_ur plate e
cases : T f E
1. When there is a uniform pressure, and b [ 1

2. When there is a uniform

wear.

1. Considering uniform pressure

Wiy

When the pressure is uniformly distributed

over the entire area of the friction face, then V
Friction

the intensity of pressure
tyofp ’ surfale

i (@) )

e
O0s) &)1

We have discussed above that the frictional torque on the elementary ring of radius r and thickness dr is

Integrating this equation within the limits from r2 to r1 for the total frictional torque.

4 Total frictional torque acting on

[ 7

= 12 B _c?r

fl

Substituting the value of p from e

T=2Lecs —

Ay Tr=20cprdr

2 L
=5 o
R = Mean radn

_2 Lyl

3 o)

2. Considering uniform wear
In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the clutch. Since the intensity

of pressure varies inversely with the distance, therefore



p.r. = C (a constant) or p = C'r
and the normal force on the nng,

D

C
™MW = p 2] rdf = : ~2 0 Car=20Cdr

4 Total fore= acting on the friction surface.

n

+20Cdr=20CH rlrzzzc{nfzrj

2

W=

w
=
or

30 | r2)
We know that the frictional torgue acting on the nng,
c
=20 o r2idr=2 Coc “ra _dr =20 L _ridr

4 Total frictional torque on the friction surface,

ri
5 Lrz
= e Crdr=2 :oc_-:?_i—jk

W
20(n 1 my ot (2]

=DeC[n)l {rk]=T"

ba e

cee W (n == W R

where R = Mean radius of the frnction surface = 1102
¥

Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be transmitted. The
inside discs (usually of steel) are fastened to the driven shaft to permit axial motion (except for the last disc). The
outside discs (usually of bronze) are held by bolts and are fastened to the housing which is keyed to the driving
shaft. The multiple disc clutches are extensively used in motor cars, machine tools etc.

Let

n1=Number of discs on the driving shaft, and

n2= Number of discs on the driven shaft.

19
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4 Number of pairs of contact surfaces.
n=m+n-—1
and total frict:onal torque acting on the friction surfacss or on the cluich,

T=n=WR
where R = M=an radmas of the friction surfaces

2lnpl enl

Ty FAO_ ..AFor uniform pressure)
slog:ifne
ri+r:

=" 5 _(For uniform wear)

ﬂlﬁﬁ!ﬁ! discs
Inside discs
Sprng
Feziher

., - N, .ﬁﬁj,-
A RS

Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it has been replaced

completely by the disc clutch

fy f
z L |
\ FiTiTv,
_— N7

i
E Driven
i
]

Driver !

Conical fricton

surface \N‘b'n..._.



It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the driving shaft by a sunk key
and has an inside conical surface or face which exactly fits into the outside conical surface of the driven. The driven
member resting on the feather key in the driven shaft, may be shifted along the shaft by a forked lever provided at B,
in order to engage the clutch by bringing the two conical surfaces in contact. Due to the frictional resistance set up at
this contact surface, the torque is transmitted from one shaft to another. In some cases, a spring is placed around the
driven shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains the
pressure between them, and the forked lever is used only for disengagement of the clutch. The contact surfaces of
the clutch may be metal to metal contact, but more often the driven member is lined with some material like wood,
leather, cork or asbestos etc. The material of the clutch faces (i.e. contact surfaces) depends upon the allowable
normal pressure and the coefficient of friction. Consider a pair of friction surface as shown in Fig. 10.25 (a). Since
the area of contact of a pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone

clutch may be determined in the similar manner as discussed for conical pivot bearings in Art.

A di

° !
‘-.'r ;«"-._r J{fi L iu‘r:_:___x

—_—
g
e ™
2
(
-
5.

xS ERIERE VR EE]

(@) i)

pn = Intensity of pressure with which the conical friction surfaces are held together (i.e. normal pressure
between contact surfaces),
riand r2= Outer and inner radius of friction surfaces respectively.

R = Mean radius of the friction surface

(= Semi angle of the cone (also called face angle of the cone) or the angle of the friction surface with the axis
of the clutch,
o = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known as face width or clutch face).

Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length of ring of the friction

21



surface, such that
dl = dr.cosec {

Area of the ring,
A =20r.dl=20r.dr cosec {

We shall consider the following two cases :
1. When there is a uniform pressure, and

2. When there is a uniform wear.

1. Considering uniform pressure
We know that normal load acting on the ring,
W,, = Normal pressure x Area of ring = p,, x 2 [ r.dr.cosec

and the axial load acting on the ring,
W = Horizontal component of ™MW , (i.e. in the direction of W)

=™W , x sin { = p, x 2[] r.dr. cosec { x sin { = 2[1 X p,.r.dr

Total axial load transmitted to the clutch or the axial spring force required,

< L _‘—l Liey Timye
; — 211 po (e .lE.'.J_

W= 4 aoplar=2Fp — A
e o . - -
=:p'n:|.{ﬂ_ 2)d
W

)] (e

n

W= 4 2opdar=gFp —] =2 :Pri[rjl :J”]: '
ra ot - il
=TpaOlfn 2)
W
Tir) 1 (re]

We know that frictional force on the ring acting tangentially at radius r,

Fr=o0c™W ,=oc.p, x 2 [r.dr.cosec (

Frictional torque acting on the ring,
T,=F. xr=oc.p,x2lrdr. cosec{.r =20 oc.p,.cosec{.r2dr

Integrating this expression within the limits from r2to r1 for the total frictional torque on the clutch.

Total frictional torque,
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n [ H
1 L
T= 490 P cosec (. .dr =2 Cec pn cosec ( | |_|_
=3
i rz

Ly Tm)]
=20 = pn cosec {ﬁ%&

Substituting the value of p, from equation (i), we get

W ll.{{]azl (r)s |

T=20ec ————— cosec {
Ol L ()]

Ln)s i (r2)s |

joga ! el

. ==_W cosec { |

-..u|r-u

2. Considering uniform wear
In Fig. 10.25, let p, be the normal intensity of pressure at a distance r from the axis of the clutch. We know
that, in case of uniform wear, the intensity of pressure varies inversely with the distance.

4 pr.r— C (a constant) or Br— C/r
We know that the normal load acting on the ring,

"Wn= Normal pressure * Areg of ring = pr = 2Lr.dr cosec (
and the axial load acting on the ning _

™A =™MWnxsin{=pr2 Jrdrcosec{ sin{=prx20rdr

£

G e L

= 20rdr=20Cdr Bl C/r)

4 Tatal axial load transmitted to the clutch,
r
W= 4 20Cdr=20C[r}a=20C(ri 1)

I

v/

o & ..{iii)
27(n ] ™)

We know that frictional force acting on the ring
Fr— e ™Wa—e= pr= 20 r= droosec
and frictional torgue acting on the ring,

Tr=Fxr=ccprx 30 rdrcosec{x

=oc 5 <2010 drvosec{ =20 Coosec| - 1 dr
-
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4 Total frictional torque acting on the clutch,

r1 I3 T
inl
T= 4 20« .Ccosec (r dr=2 O C.cosec ( L;[—
5 Bl "
I l(ax]
=2 OeCdosect |__—(!‘l » - () |
o2l S
Substimting the value of C from equation (i}). we have
5] S — L Y
200 Iy g2 ]
r+rs |
=oc.Weosec (| I=o<.W R cosec(

Centrifugal Clutch

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a number of shoes on the
inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the shoes are covered with a friction

material. These shoes, which can move radially in guides, are held

Farrodo

Cover i lining
plate -\’\L-
H /7
5 ; - l_,'
. E\““?ﬁ Spider __//
Spider d //;Q\
%fA S

Spring

against the boss (or spider) on the driving shaft by means of springs. The springs exert a radially inward force which
is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially outward force (ie.
centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A
little consideration will show that when the centrifugal force is less than the spring force, the shoe remains in the
same position as when the driving shaft was stationary, but when the centrifugal force is equal to the spring force,
the shoe is just floating. When the centrifugal force exceeds the spring force, the shoe moves outward and comes
into contact with the driven member and presses against it. The force with which the shoe presses against the driven

member is the difference of the centrifugal force and the spring force. The increase of speed causes the shoe to press



harder
and enables more torque to be transmitted.

In order to determine the mass and size of the shoes, the following procedure is adopted :

1. Mass of the shoes
Consider one shoe of a centrifugal clutch as shown in Fig

Let m = Mass of each shoe.

1 = Number of shoes,

= Distance of centre of gravity of
the shoe from the centre of the
spider,

R = Inside radms of the pulley rim_

N = Running speed of the pulley in
rpm.

1= Angular munning speed of the
pulley m rad/s = 20N/60 rad/s.

h= Angular speed at which the :
engagement begins to take place. Fig. 10.29. Forces on a shoe of
and centrifiigal clutch

= = Coefficient of friction between
the shoe and rim:

We know that the centrifugal force acting on each shoe at the runming speed,

Pe=m_hr

We know that the centrifugal force acting on each shoe at the running speed,
*P.=m.br

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to take

place,
Pi=m (her

The net outward radial force (i.e. centrifugal force) with which the shoe presses against the rim at the

running speed
=P.—P
and the frictional force acting tangentially on each shoe,
F=oc(P.—Py)
Frictional torque acting on each shoe,

=FxR=o(P.—P)R



26

and total frictional torque transmitted,
T=0x(P.—P)Rxn=n.FR
From this expression, the mass of the shoes (m) may be evaluated.
2. Size of the shoes
[ = Contact length of the shoes,
b = Width of the shoes,
R = Contact radius of the shoes. It is same as the inside radius of the rim of the pulley.
\= Angle subtended by the shoes at the centre of the spider in radians.
p = Intensity of pressure exerted on the shoe. In order to ensure reasonable life, the intensity of
pressure may be taken as 0.1 N/mm2
Area of contact of the shoe,
A=Lb
and the force with which the shoe presses against the rim
=Axp=Lbp
Since the force with which the shoe presses against the rim at the running speed is (P, — Py),
therefore

Lbp="P.—P
From this expression, the width of shoe (b) may be obtained.
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Introduction

A brake is a device by means of which artificial frictional resistance is applied to a moving machine

member, in order to retard or stop the motion of a machine. In the process of performing this function, the brake

absorbs either kinetic energy of the moving member or potential energy given up by objects being lowered by hoists,

elevators etc. The energy absorbed by brakes is dissipated in the form of heat. This heat is dissipated in the

surrounding air (or water which is circulated through the passages in the brake drum) so that excessive heating of the

brake lining does not take place. The capacity of a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,

2. The coefficient of friction between the braking surfaces,
3. The peripheral velocity of the brake drum,

4. The projected area of the friction surfaces, and

5. The ability of the brake to dissipate heat equivalent to the energy being absorbed.

The major functional difference between a clutch and a brake is that a clutch is used to keep the driving and

driven member moving together, whereas brakes are used to stop a moving member or to control its speed.

Materials for Brake Lining

The material used for the brake lining should have the following characteristics

1. Tt should have high coefficient of friction with minimum fading. In other words, the coeffi- cient of

friction should remain constant with change in temperature.
2. It should have low wear rate.
3. It should have high heat resistance.
4. It should have high heat dissipation capacity.
5. It should have adequate mechanicalstrength.

6. It should not be affected by moisture and oil.

The materials commonly used for facing or lining of brakes and their properties are shown in the following

table.
Types of Brakes

The brakes, according to the means used for transforming the energy by the braking elements, are classified
as:

1. Hydraulic brakes e.g. pumps or hydrodynamic brake and fluid agitator,
2. Electric brakes e.g. generators and eddy current brakes, and

3. Mechanical brakes.

The hydraulic and electric brakes cannot bring the member to rest and are mostly used where large amounts
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of energy are to be transformed while the brake is retarding the load such as in laboratory dynamometers, high way
trucks and electric locomotives. These brakes are also used for retarding or controlling the speed of a vehicle for down-
hill travel. The mechanical brakes, according to the direction of acting force, may be divided into the following two
groups :
(a) Radial brakes. In these brakes, the force acting on the brake drum is in radial direction. The radial brakes
may be sub-divided into external brakes and internal brakes. According to the shape of the friction
elements, these brakes may be block or shoe brakes and band brakes.
(b) Axial brakes. In these brakes, the force acting on the brake drum is in axial direction. The axial brakes
may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches. Since we are
concerned with only mechanical brakes, therefore, these are discussed, in detail, in the following pages.
Single Block or Shoe Brake

A single block or shoe brake is shown in Fig. 19.1. It consists of a block or shoe which is pressed against
the rim of a revolving brake wheel drum. The block is made of a softer material than the rim of the wheel. This type
of a brake is commonly used on railway trains and tram cars. The friction between the block and the wheel causes a
tangential braking force to act on the wheel, which retard the rotation of the wheel. The block is pressed against the
wheel by a force applied to one end of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other

end of the lever is pivoted on a fixed fulcrum O.
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(a) Clockwise rotarmﬂ of brake wheel (b) Anticlockwise rotation of brake wheel
If the angle of contact is less than 60°, then it may be assumed that the normal pressure between the block

and the wheel is uniform. In such cases, tangential braking force on the wheel,

Fi=u.Ry
and the braking torque. [ 5= FtL.r=n Rx.r

Let us now consider the following three cases :
Case 1. When the line of action of tangential braking force (Ft ) passes through the fulcrum O of the lever, and the
brake wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about the fulcrum O, we

have



Ry-x=P lorRx=

Braking torgue.
£ Pl =Plr

B =—mff=c. .r=—
¥

X
It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. (b), then the braking
torque is same, Le

o O]
¥

lB==FRn.r=

Case 2. When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ below the fulcrum
O, and the brake wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about the

fulcrum O,

Pl

Ruxi+Fixg=P] orfNxxtuRurg=pP[ of Ru= P

e e Zeplr

and brakinyg loigue,

X+
>l
;—— X — ll i
; — _
B
D[ b
B
Rigidly
mounted
block
(a) Clockwise rotabon ol bnake wheel (&) Antclock wise 1otaiion of brake wheel

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium.

Bux=Pl+FRa=FPl+pRua

P
or Ru(x—pa)y=Pl ©Of R¥= %1 sc.a
e PLr

and bralang torque. Ta=ocfin.r= z
X e

Case 3. When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ above the fulcrum
O, and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for equilibrium, taking moments about the

fulcrum O, we have
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Rux=Pi+Fr.a=Pl+puRua

or Ry (x—p.a) =P or = ¢l «a

P g B ;F: i
-.‘.. | f..ll_,
— | —
{a) Clockwise rotation of brake wheel (&) Anticlockwise totation of brake wheel.
and braking torque, w PLr
B=pRNr= »1 g

When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then for equilibrium, taking

moments about the fulcrum O, we have

— it
Ruxx+FRxa=Pl Of Ruxxt+pRuxa=PlorRN= .4
e P LI
d braking t : = =
and braking forque,  Ta=pRwr= .

Pivoted Block or Shoe Brake

We have discussed in the previous article that when the angle of contact is less than 60°, then it may be
assumed that the normal pressure between the block and the wheel is uniform. But when the angle of contact is
greater than 60°, then the unit pressure normal to the surface of contact is less at the ends than at the centre. In such
cases, the block or shoe is pivoted to the lever, as shown in Fig. 19.4, instead of being rigidly attached to the lever.
This gives uniform wear of the brake lining in the direction of the applied force. The braking torque for a pivoted

block or shoe brake (i.e. when 2 > 60°) is

given by
le=F-r=c2.fn.r
where <2 = Equivalent coefficient of friction = —_— and
2! +sm 2

u = Actual coefficient of friction.
These brakes have more life and may provide a higher braking torque.



31

Simple Band Brake
A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with friction material,

which embraces a part of the circumference of the drum. A band brake, as shown in Fig., is called a simple band
brake in which one end of the band is attached to a fixed pin or fulcrum of the lever while the other end is attached
to the lever at a distance b from the fulcrum. When a force P is applied to the lever at C, the lever turns about the
fulcrum pin O and tightens the band on the drum and hence the brakes are applied. The friction between the band
and the drum provides the braking force. The force P on the lever at C may be determined as discussed below :

\ = Angle of lap (or embrace) of the band on the drum,

n = Coefficient of friction between the band and the drum,

r = Radius of the drum,

t = Thickness of the band, and

re = Effective radius of the drum

. | ~F I

;P |-;—11+1 LP

Ic Of B Ic

T
\ .rt

:

(@) Clockwase rotation of drum. (b} Anticlockwise rotation of drum.

We know that limiting ratio of the tensions is given by the relation,

2 3log|[ e

Y=l or
v L
and braking force on the drum =T 1- T2
Braking torque on the drum,
TB=(T1-T2)r ... (Neglecting thickness of band)
=(T1-T2)r, ... (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum rotates in the
clockwise direction, as shown in Fig.(a), the end of the band attached to the fulcrum O will be slack with tension T2

and end of the band attached to B will be tight with tension T1. On the other hand, when the drumrotates in the



anticlockwise direction, as shown in Fig.(b), the tensions in the band will reverse, i.e. the end of the band attached to
the fulcrum O will be tight with tension T1 and the end of the band attached to B will be slack with tension T 2. Now
taking moments about the fulcrum O, we have

Pl=Ti.b ... (For clockwise rotation of the drum)

Pl=T2b ... (For anticlockwise rotation of the drum)

Internal Expanding Brake

An internal expanding brake consists of two shoes S1 and S2 as shown in Fig.. The outer surface of the
shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent
wearing away of the metal. Each shoe is pivoted at one end about a fixed fulcrum O1 and O2 and made to contact a
cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction

between the shoes and the drum produces the braking torque and hence reduces the speed of the drum. The shoes are

Leading of

primary shoe Trailing or
- : secondary shoe

normally held in off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep
out dust and moisture. This type of brake is commonly used in motor cars and light trucks.
We shall now consider the forces acting on such a brake, when the drum rotates in the anticlockwise direction

as shown in Fig. 19.25. It may be noted that for the anticlockwise direction, the left hand shoe is known as leading or

primary shoe while the right hand shoe is known as trailing or secondary shoe.
Let r = Internal radius of the wheel rim_
b = Width of the brake lining.
p1 = Maximum ntensity of normal
pressure,
pw = Normal pressure,

F1=Force exerted by the cam on

the leading shoe. and

f2 = Force exerted by the cam on
the trathing shoe.
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Consider a small element of the brake lining AC subtending an angle ™\ at the centre. Let OA makes an angle \ with
OO:1 as shown in Fig. 19.25. It is assumed that the pressure distribution on the shoe is nearly uniform, however the friction lining
wears out more at the free end. Since the shoe turns about O, therefore the rate of wear of the shoe lining at A will be
proportional to the radial displacement of that point. The rate of wear of the shoe lining varies directly as the perpendicular

distance from O1to OA, i.e. O1B. From the geometry of the figure,

01B = 00 sin
and normal pressureat A,

PN sin \orpNz p1sin N
Normal force acting on the element,

TRy = Normal pressure = Area of the element

= p (b.r™) = p1 sin | (Br ™)
and braking or friction force on the element,
ME = oc . MRy =oc_ p1 sin \(b.r. ™)
4 Rraking torque due to the element ahout 0
™MTB=TMF. r=oc. prsin\(b.r™Yyr=cc pibra(sin! ™)
and total braking torque about O for whole of ome shoe,

12
II

Tﬁzecplbf_l+smld' = plir _['q?ﬁ I
Wb

2

= o p1byr flcosl-i [ cos'2)
Moment of normal force ™RN of the element about the fulcrum Or,

My =T - OB =TYRr (CO1 sm ')

= p1 sin | (b.r. ™) (001 sin | ) = p1 sin2 | (b.r ™ )OO

4 Total moment of normal forces about the fulcrum O1.

1 _ 1
=pebr.0CH <+ (1] cos 7l }G" . Ein?{E | cos a} |

1 l 1 sin A Ta
=% pr.b.rOOy!* J'
il L1

_ cr L inkatl
3 lpx.b:r.ooi -z-_jJ 1+

1 | i o Ml -,
S pLbr001 i{’z-’ D +|f51ﬂ 2} 1 sm3y|
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Moment of frictional force ™F about the fulerum O1.
™ME=TF. AB="F (r | OO1cos!)

= prsmn \(br™) (r | OO1 cos')

34

A AB=r—00C1cos! )

=oc.prbs(rsin! | O01sm cos )™

- NEm . | a2
—oc_pl_b_gl 5 )

4 Total moment of frictional force about the fulerum O1,

L ooy !

Me=wcpibr +Hraml] 2 sin 2\ Ig'.'

=mplb|..';rcas|-+ - cos 2!
L 001 :
= o< p1b 1 [ recos ¢”+ cos 3\ +

L B 00
= o< p1b r- r(cos 1+ 03 gl}‘ ?

.. (" 2sm \cos | =sin 21)

o001 |

4:':‘951'- | —Tfos 2\

Now for leading shoe. taking moments about the fulcrum O1.

Fi=l=Mn— Mr
and for trailing shoe, talking moments about the fulcrum O2,

Fax [=Mx+ Mr

Types of Dynamometers

Following are the two types of dynamometers, used for measuring the brake power of an engine.

1. Absorption dynamometers, and

2. Transmission dynamometers.

In the absorption dynamometers, the entire energy or power produced by the engine is absorbed by the

developed is suitably measured.

Classification of Absorption Dynamometers

friction resistances of the brake and is transformed into heat, during the process of measurement. But in the
transmission dynamometers, the energy is not wasted in friction but is used for doing work. The energy or

power produced by the engine is transmitted through the dynamometer to some other machines where the power

The following two types of absorption dynamometers are important from the subject point of view :

1. Prony brake dynamometer, and

2. Rope brake dynamometer.
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These dynamometers are discussed, in detail, in the following pages.
Prony Brake Dynamometer

A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown in Fig. 19.31.
It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine whose power is required to
be measured. The blocks are clamped by means of two bolts and nuts, as shown in Fig.. A helical spring is provided
between the nut and the upper block to adjust the pressure on the pulley to control its speed. The upper block has a
long lever attached to it and carries a weight W at its outer end. A counter weight is placed at the other end of the

lever which balances the brake when unloaded. Two stops S, S are provided to limit the motion of the lever

| L
NLIT—-P_ (] ! I'_t. ‘
4 @.I.-Spring =
I ES ES j| B
| R . ! Levar ]
| & ) H L B
- o =

Counter
welght

M =
;—;—> Blocks

Pulley

When the brake is to be put in operation, the long end of the lever is loaded with suitable weights W and the nuts are
tightened until the engine shaft runs at a constant speed and the lever is in horizontal position. Under these conditions, the

moment due to the weight W must balance the mo- ment of the frictional resistance between the blocks and the pulley.

Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most o
commonly used for measur- ing the brake power of the engine. It consists ,!.-1‘,‘\
of one, two or more ropes wound around the flywheel or rim of a pulley Wooden '.{‘ /.' Spring balance
fixed rigidly to the shaft of an engine. The upper end of the ropes is ek - Werans
attached to a spring balance while the lower end of the ropes is kept in A/ ' ; ~r
position by applying a dead weight as shown in Fig.. In order to prevent q / \Jr'.*' W
the slipping of the rope over the flywheel, wooden blocks are placed at E{r 7
intervals around the circumference of the flywheel. In the operation of the s N
brake, the engine is made to run at a constant speed. The frictional torque, ; B
due to the rope, must be equal to the torque being transmitted by the 4

engine. Cocling ‘I
water Wy .
— === Dead weignt
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Classification of Transmission Dynamometers
The following types of transmission dynamometers are important from the subject point of view :
1. Epicyclic-train dynamometer,
2. Belt transmission dynamometer, and
3. Torsion dynamometer.
We shall now discuss these dynamometers, in detail, in the following pages.
Epicyclic-train Dynamometer

Annuiar gear

. 2

Levar ; an '1?‘

Fl
|r[ ' = .-:".:'.ul | -3
-.._.\‘W J I.-t\- Pinion |
/4 bl —
e U
Spur gear |“—3—" ‘

= ! -

An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train of gears, i.e. a
spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is keyed to the engine shaft (i.e.

driving shaft) and rotates in anticlockwise direction. The annular gear is also keyed to the driving shaft and rotates in

clockwise direction. The pinion or the intermediate gear meshes with both the spur and annular gears. The pinion
revolves freely on a lever which is pivoted to the common axis of the driving and driven shafts. A weight w is
placed at the smaller end of the lever in order to keep it in position. A little consideration will show that if the
friction of the pin on which the pinion rotates is neglected, then the tangential effort P exerted by the spur gear on
the pinion and the tangential reaction of the annular gear on the pinion are equal.

Since these efforts act in the upward direction as shown, therefore total upward force on the lever acting
through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum and it is balanced by a dead
weight W at the end of the lever. The stops S, S are provided to control the movement of the lever.

For equilibrium of the lever, taking moments about the fulcrum F,

2Pxa=W.L or P=W.L/2a

Belt Transmission Dynamometer-Froude or Throneycroft Transmission Dynamometer
When the belt is transmitting power from one pulley to another, the tangential effort on the driven pulley is
equal to the difference between the tensions in the tight and slack sides of the belt. A belt dynamometer is

introduced to measure directly the difference between the tensions of the belt, while it is running.
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A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft transmission

dynamometer. It consists of a pulley A (called driving pulley) which is rigidly fixed to the shaft of an engine whose power is
required to be measured. There is another pulley B (called driven pulley) mounted on another shaft to which the power from
pulley A is transmitted. The pulleys A and B are connected by means of a continuous belt passing round the two loose pulleys C
and D which are mounted on a T-shaped frame. The frame is pivoted at E and its movement is controlled by two stops S,S. Since
the tension in the tight side of the belt (T1) is greater than the tension in the slack side of the belt (72), therefore the total force
acting on the pulley C (i.e. 2Th) is greater than the total force acting on the pulley D (i.e. 2T2). It is thus obvious that the frame

causes movement about £ in the anticlockwise direction. In order to balance it, a weight W is applied at a distance L from E on
the frame as shown in Fig.

Now taking moments about the pivot E, neglecting friction,

2T1-a=2T2 -a+W.

Torsion Dynamometer

A torsion dynamometer is used for measuring large powers particularly the power transmit- ted along the
propeller shaft of a turbine or motor vessel. A little consideration will show that when the power is being

transmitted, then the driving end of the shaft twists through a small angle relative to the driven end of the shaft. The
amount of twist depends upon many factors such as torque acting on the shaft (7), length of the shaft ({), diameter of

the shaft (D) and modulus of rigidity (C) of the material of the shaft. We know that the torsion equation is
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TURNING MOMENT DIAGRAM AND FLY WHEELS

Turning Moment Diagram: The turning moment diagram is graphical representation of the turning moment or crank effort for

various positions of crank.

Single cylinder double acting engine:

A turning moment diagram for a single cylinder
double acting steam engine 1s shown in Fig. The vertical
ordinate represents the turning moment and the horizontal
ordinate represents the crank angle.

the turning moment on the crankshaft,

sin 29
ZJHE — sin° 0

I =Fp Xr|sinB +

T T b Mean resisting d
M. Wi forque | °
5 :
5 /| /
E ! : | ‘l | : \
E’ Vi A B.": | | C D jl :.E E
c I | I I I
/o : i'X fi g |
| a : : I L : i I a
rayge S 360°

a P 90 9 180°
— Crank angle ——»
Tlllninj;r mioaneit diagmm fora Si.]!.g].f'.' c:.-'li.l.l-;icr. double m:u'.tLg sfzam eugi.ue.
where Fp = Piston effort,
r = Radius of craunk,
H
g

Ratio of the connecting rod length and radius of crank. and

Angle turned by the erank from inner dead centre.



From the above expression, we see
that the rning moment (1 ) 15 zero, when the
crank angle () 15 zero. It 15 maximum when
the crank angleis 907 and it 1s agaim zero when
erank angle is 1807,

This is shown by the curve abe in
Fig. and it represents the furning
moment dizgram for outstroke. The curve
cde is the turning moment diagram for
instroke and is somewhat similar to the
curve abr.

Since the work done is the product
of the turning moment and the angle turned.
therefore the area of the turning moment
diagram represeats the work done per
revolution, In acrial practice. the engine is
assumead to worle against the mean resisting
torque, as shown by a horizontal line AF.
The height of the ordinate a4 represents the
meatt height of the tuming mement diagram.
Sinece it 1g assumed that the work done by
the turming moment per revolution 15 equal
to the work done against the mean resisting
torque. therefore the area of the rectangle
aAFe is proportional to the work done against
the mean resisting torque.

Far fiywheel, have a lock at your tailor's manual
sewing machine.
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A mirning moment diagram for a four stroke cyele internal combustion engine is shown in
Fig. We know that in a four stroke cyele internal combustion engine, there is one working
stroke after the crank has turned through two revolutions. 7.e. 720° (or 4 1 radians).

L]

—_—

Turning moment

_ Positive loop

Mean resisting
torgue

i . ""I’.l.
I W 4r
4— Suction —Pl‘-

Compression -+— Working —>|<- Exhausﬁ-l"

Crankangle —

Turning moment diagram for a four stroke cycle internal combustion cngine.

Since the pressure inside the engine cylinder is less than the atmospheric pressure during
the suction stroke, therefore a negative loop 1s formed as shown in Fig. 16.2. Durmg the compression
stroke, the work 1s done on the gases, therefore a higher negative loop is obtained. During the

expansion or working stroke, the fuel burns and the gases expand, therefore a large positive loop 1s
obtamed. In this stroke, the work 1s done by the gases. During exhaust stroke. the work 1s done on

the gases. tharefore a negative loop is formed. It may be noted that the effect of the inertia forces on
the piston 1s taken into account m Fig.
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Turning moment diagram for a multi cvlinder engine:

A separate turning moment diagram for a compound steam engine having three cylinders
and the resultant turning moment diagram is shown in Fig. The resultant turning moment
diagram is the sum of the rurning moment diagrams for the three cylinders. It may be noted that the
first cylinder is the high pressure cylinder. second cylinder is the intermediate cylinder and the third
cylinder 1s the low pressine cylinder. The cranks, in case of three cylinders, are nsually placed ar
1207 to each other.

Resultant turning

T » moment Mean torque
2
g \{';ylindar Cylinder Cylinder
1 2 3

£ | ANSE NEN IS
E L Nl N S R X N
= A :}{. .-')\. }(j \/\' ’X\\ “’-/
| \ \ J/ \ ’ \\\ / \\ //‘ \\ /"’ \\ -J/ "

PV 2 /\"\ Ao % ,>(\
0 4 il \/ \vj Yt \/ .\\

60°  120° 180° 240° 300°  360°
Crank angle ——»
Turning moment diagram for a multi-cylinder engine.

Fluctuation of Energy:

The difference in the kinetic energies at the point is called the maximum fluctuation of

energy.
T | . b Mean resisting d
3 e = torque =il s
= S / o
E / [ ! f | \
e ! f '
[ Yics D : \E
E’ T mean A BI.', : ¥ * Ty F
s O E A
b 4 J W
& I g I "\
wl i i I L I I I bW
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Crank angle ———»



The fluctuation of energy may be determined by the tuming moment diagram for one complete
cycle of operation. Consider the turning moment diagram for a single evlinder double acting steam
engine as shown in Fig We see that the mean resisting torque line 4F cuts the furning moment
diagram at points B. C, D and E. When the crank moves from # to p. the work done by the engine 1s
equal to the area aBp, whereas the energy required is represented by the area 04Bp. In other words,
the engine has done less work (equal to the area @ AB) than the requirement. This amount of energy
15 taken from the flywheel and hence the speed of the flywheel decreases. Now the crank moves
from p to ¢. the work done by the engme is equal to the area pBhCyq. whereas the requirement of
energy 1s represented by the area pBCy. Therefore, the engine has done more work than the
requirement. This excess work (equal to the area BLC) is stored in the flywheel and hence the speed
of the flywheel increases while the crank moves from p to g.

Similarly. when the crank moves from ¢ to 7, more work 1s taken from the engine than 1s
developed. This loss of work 15 represented by the area C ¢ D. To supply this loss, the flywheel gives
up some of 1ts enerzy and thus the speed decreases while the crank moves from ¢ tor. As the erank
moves from r to 5. excess energy 13 again developed given by the area D d E and the speed again
mncreases. As the piston moves from s to e, again there is a loss of work and the spead decreases. The
variations of energy above and below the mean resisting torque line are called fluctuations of
energy. The areas BHC, CeD), DAE. etc. represent fluctuations of energy.

A hittle consideration will show that the engine has a maxinmum speed either at g or at s, This
is due to the fact that the flywheel absorbs energy while the crank moves from p to ¢ and from 7 to.s.
On the other hand, the engine has a minimum speed either at p or at 7. The reason 1s that the flywheel
gives out some of its energy when the crank moves from o to p and ¢ to 7. The difference between the
maximum and the minmum energies is known as maximum fluctuation of energy.

Fluctuation of Speed:
This is defined as the ratio of the difference between the maximum and minimum angular

speeds during a cycle to the mean speed of rotation of the crank shaft.

Maximum fluctuation of energy:

A turning moment diagram for a multi-cylinder engine 1s shown by a wavy curve in Fig.

The horizontal line 4 G represents the mean torque line. Let @, @, a5 be the areas above the

mean torque line and a,, a, and a, be the areas below the mean torque line. These areas represent

some quantity of energy which is either added or subtracted from the energy of the moving parts of
the engine.
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Let the energy m the flywheel at 4 = E,% |

then from Fig. we have
EnergyatB =E+ a
Energy at C = E+a—a,
EnergvatDd = E-a —-a,+a,
EnergyatE = E+ay—a, tay—ay
Energyat F =E + a;—a; ta;—a, +a

Energyat G= E+g,—a,ta,—a,+0,—aq

= Energy at 4 (i.e. eycle
repeats after G)
Latl us now suppose that the greatest of . e Sl
these energies is at B and least at E. Therefore. - N LAl el
A flywheel stores energy when the supply
is in excess and releases energy when
=Eta energy is in deficit.

Maxinuum energy in flywheel

Minimum energy in the flywheel
=Etg —gta—a
oo Maximum fluctuation of energy.
A E = Maximum efiergy — Minimum energy
={Eta)-—(E+a —~ata—a)=ag—d¥a
Coefficient of fluctuation of energy:

It may be defined as the ratio of the maximum fluctuation of energy to the work done
per cycle. Mathematically, coefficient of fluchuation of energy.

c Maximum fluctuation of energy
E T s

Work done per cycle

The work done per ¢ycle (in N-m or joules) may be obtained by using the following two
relations ;

1. Work done percycle =7, %0
where T e = Mean torque, and
B = Angle tumed (1n radians), in one revolution.

21, in case of steam engine and two stroke intemal combustion
engines

47, in case of four stroke internal combustion engines.
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The mean torque (I ) in N-m may be obtained by using the following relation :

HadH

_Px60 P
ean 2 ']'[ ‘-’\F m
where P = Power transmitted in watts,

N = Speed in r.p.m., and
@ = Angular speed in rad/s =2 nN/60
2. The work done per cvele may also be obtained by nsing the following relation ;

Fx 60

i

Work done per cycle

where n = Number of working strokes per minute,

N. in case of sieam engines and two stroke internal combustion
engines,

= N /2. in case of four stroke internal combustion engines.

Coefficient of fluctuation of speed:

The differsnce betwesn the maximum and minimum speads during a cycle 12 called the
maximam fluctwation ef speed. The 1atio of the maximun fluctuation of speed to the mean speed is
called the coefficient of fiwciuation of speed.

Let N, and NV, = Maximum and minimum speeds in r.p.m. during the cycle, and

N +N.
N = Mean speed in rp.an. = =

“

. Coefficient of fluctuation of spesd,

. N -N, i} :[N] = _-'v!)
& N NN

o — o, 21\ m — mz}

.(In terms of angular speecds
s o + 0, ( ng I )

2 ——t — ...(In terms of linear speeds)

Energy stored in flywheel:

A flywheel is a rotating mass that is used as an energy reservoir in a machine. It
absorbs energy in the form of kinetic energy, during those periods of crank rotation
when actual turning moment is greater than the resisting moment and release energy,
by way of parting with some of its K.E, when the actual turning moment is less than

the resisting moment.
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Principal Inertia Axis

Geometric Centerline

Rotating centerline:

The rotating centerline being defined as the axis about which the rotor would rotate if not
constrained by its bearings. (Also called the Principle Inertia Axis or PIA).

Geometric centerline:
The geometric centerline being the physical centerline of the rotor.

When the two centerlines are coincident, then the rotor will be in a state of balance.
When they are apart, the rotor will be unbalanced.

Different types of unbalance can be defined by the relationship between the two
centerlines. These include:

Static Unbalance — where the PIA is displaced parallel to the geometric centerline.
(Shown above)

Couple Unbalance — where the PIA intersects the geometric centerline at the center of
gravity. (CQG)

Dynamic Unbalance — where the PIA and the geometric centerline do not coincide or
touch.

The most common of these is dynamic unbalance.

Causes of Unbalance:
In the design of rotating parts of a machine every care is taken to eliminate any out of
balance or couple, but there will be always some residual unbalance left in the finished
part because of

slight variation in the density of the material or

inaccuracies in the casting or

inaccuracies in machining of the parts.

Why balancing is so important?
A level of unbalance that is acceptable at a low speed is completely unacceptable at
a higher speed.
As machines get bigger and go faster, the effect of the unbalance is much more severe.
The force caused by unbalance increases by the square of the speed.
If the speed is doubled, the force quadruples; if the speed is tripled the force increases
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by a factor of nine!

Identifying and correcting the mass distribution and thus minimizing the force and
resultant vibration is very very important

BALANCING:

Balancing is the technique of correcting or eliminating unwanted inertia forces or
moments in rotating or reciprocating masses and is achieved by changing the location of
the mass centers.

The objectives of balancing an engine are to ensure:

1. That the centre of gravity of the system remains stationery during a complete revolution
of the crank shaft and

2. That the couples involved in acceleration of the different moving parts balance
each other.

Types of balancing:

a) Static Balancing:
1) Static balancing is a balance of forces due to action of gravity.
i1) A body is said to be in static balance when its centre of gravity is
in the axis of rotation.
b) Dynamic balancing:
1) Dynamic balance is a balance due to the action of inertia forces.
ii)) A body is said to be in dynamic balance when the
resultant moments or couples, which involved in the
acceleration of different moving parts is equal to zero.

ii1) The conditions of dynamic balance are met, the
conditions of static balance are also met.

In rotor or reciprocating machines many a times unbalance of forces is produced due to
inertia forces associated with the moving masses. If these parts are not properly balanced,
the dynamic forces are set up and forces not only increase loads on bearings and stresses
in the various components, but also unpleasant and dangerous vibrations.

Balancing is a process of designing or modifying machinery so that the unbalance is
reduced to an acceptable level and if possible eliminated entirely.

BALANCING OF ROTATING MASSES

When a mass moves along a circular path, it experiences a centripetal acceleration and a
force is required to produce it. An equal and opposite force called centrifugal force acts
radially outwards and is a disturbing force on the axis of rotation. The magnitude of this
remains constant but the direction changes with the rotation of the mass.
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In a revolving rotor, the centrifugal force remains balanced as long as the centre of the
mass of rotor lies on the axis of rotation of the shaft. When this does not happen, there is
an eccentricity and an unbalance force is produced. This type of unbalance is common in
steam turbine rotors, engine crankshafts, rotors of compressors, centrifugal pumps etc.

The unbalance forces exerted on machine members are time varying, impart vibratory
motion and noise, there are human discomfort, performance of the machine deteriorate
and detrimental effect on the structural integrity of the machine foundation.

Balancing involves redistributing the mass which may be carried out by addition or
removal of mass from various machine members Balancing of rotating masses can be of

1. Balancing of a single rotating mass by a single mass rotating in the same plane.
2. Balancing of a single rotating mass by two masses rotating in different planes.
3. Balancing of several masses rotating in the same plane

4. Balancing of several masses rotating in different planes

STATIC BALANCING:

A system of rotating masses is said to be in static balance if the combined mass centre of
the system lies on the axis of rotation

DYNAMIC BALANCING;

When several masses rotate in different planes, the centrifugal forces, in addition to being
out of balance, also form couples. A system of rotating masses is in dynamic balance
when there does not exist any resultant centrifugal force as well as resultant couple.
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CASE 1.

BALANCING OF A SINGLE ROTATING MASS BY A SINGLE
MASS ROTATING IN THE SAME PLANE

BALANCING OF A SINGLE ROTATING MASS BY A SINGLE MASS ROTATING IN THE SAME PLANE
DISTURBING MASS

AXIS OF ROTATION

BALANCING MASS

Consider a disturbing mass mj which is attached to a shaft rotating at w rad/s.
Let

ry = radius of rotation of the mass m1

= distancebetweenthe axis of rotationof the shaft and the centreof gravity of the
massmj

The centrifugal force exerted by mass m; on the shaft is given by,

This force acts radially outwards and produces bending moment on the shaft. In order to
counteract the effect of this force F; , a balancing mass m) may be attached in the same

plane of rotation of the disturbing mass mj such that the centrifugal forces due to the two
masses are equal and opposite.
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Let,

ro = radius of rotation of the mass m»

= distancebetweenthe axis of rotationof the shaft and the centreof gravity of
themassmy

Therefore the centrifugal force due to mass mp will be,

Equating equations (1) and (2), we get

cl c2
mit W2 r =mz War2 ormirm=mer—-——-——-——-————-—-————-—-—~— (3)

The product m , r, can be split up in any convenient way. As for as possible the radius
of rotation of mass m that is ry is generally made large in order to reduce the balancing
mass my.

CASE 2:

BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATING
IN DIFFERENT PLANES.

There are two possibilities while attaching two balancing masses:

1. The plane of the disturbing mass may be in between the planes of the two
balancing masses.

2.The plane of the disturbing mass may be on the left or right side of two planes
containing the balancing masses.

In order to balance a single rotating mass by two masses rotating in different planes
which are parallel to the plane of rotation of the disturbing mass i) the net dynamic force
acting on the shaft must be equal to zero, i.e. the centre of the masses of the system must
lie on the axis of rotation and this is the condition for static balancing ii) the net couple
due to the dynamic forces acting on the shaft must be equal to zero, i.e. the algebraic sum
of the moments about any point in the plane must be zero. The conditions 1) and ii)
together give dynamic balancing.
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CASE 2(l):

THE PLANE OF THE DISTURBING MASS LIES IN BETWEEN THE PLANES
OF THE TWO BALANCING MASSES.

The plane of the disturbing mass lies inbetween the planes of the two balancing masses
m

L1

L2

o

e e

23

Consider the disturbing mass m lying in a plane A which is to be balanced by two

rotating masses mj and my lying in two different planes M and N which are parallel to
the plane A as shown.

Let 1, ry and rp be the radii of rotation of the masses in planes A, M and N respectively.

Let Ly, Ly and L be the distance between A and M, A and N, and M and N
respectively. Now,
The centrifugal force exerted by the mass m in plane A will be,

Similarly,
The centrifugal force exerted by the mass m in plane M will be,
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And the centrifugal force exerted by the mass my in plane N will be,

For the condition of static balancing,

FC = Fc’] + Fc2
ormwar=miWwW2r+mzWw:zr
Le.mr=mqrq+tmyrp—-————-—--———-——-——-——-———-——-—--— (4)

Now, to determine the magnitude of balancing force in the plane ‘M’ or the dynamic
force at the bearing ‘O’ of a shaft, take moments about °* P ° which is the point of
intersection of the plane N and the axis of rotation.

Therefore,
ormw?rxL=mw’rxL
1 1
Therefore,

mrL=mrL ormr=mrlz ———————- (9)
11 2 11 L

Similarly, in order to find the balancing force in plane ‘N’ or the dynamic force at the
bearing ‘P’ of a shaft, take moments about * O * which is the point of intersection of the
plane M and the axis of rotation.

Therefore,

orm w?rxL=mw?rxL
2 2

Therefore,

mrL=mrL
2 2 1

For dynamic balancing equations (5) or (6) must be satisfied along with equation (4).
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CASE 2(1l):

WHEN THE PLANE OF THE DISTURBING MASS LIES ON ONE END OF THE
TWO PLANES CONTAINING THE BALANCING MASSES.

When the plane of the disturbing mass lies on one end of the planes of the balancing masses

“Q

@

L1

sl g nlanp i o
il e

L2

¢

For static balancing,

Fc1 = Fc + Fc2
2. _ 2 2
ormy W r=mMw-r+myWw r
e. mir=mr+tmyrnp-—-—-—-——-—-—--—-———-——-——-—————-— (1)

For dynamic balance the net dynamic force acting on the shaft and the net couple due to
dynamic forces acting on the shaft is equal to zero.

To find the balancing force in the plane ‘M’ or the dynamic force at the bearing ‘O’ of a
shaft, take moments about ‘P’. i.e.
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ormw?rxL=mw?rxL
1 1 2

Therefore,

Similarly, to find the balancing force in the plane ‘N’ , take moments about ‘O’, i.e

ormw?rxL=mw?rxL

2 2 1

Therefore,

mrL=mrL ormr=mrkt ——————— (3)
2 2 1 2 2

CASE 3:
BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE

Fc2
Resultant R O
m2 Fcl
X

Fcd

m3 ml

ibl vector dagram

tal Space dingram

BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE

Consider a rigid rotor revolving with a constant angular velocity w rad/s. A number of
masses say, four are depicted by point masses at different radii in the same transverse
plane.
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If mj, mp, m3 and my4 are the masses revolving at radii rq, rp, r3 and r4 respectively in the
same plane.

The centrifugal forces exerted by each of the masses are F¢1, F¢o, Fc3 and Feq respectively.
Let F be the vector sum of these forces. i.e.

F =|:01 +Fc2 +Fc3 + Fc4
=my w2r1+m2w2r2+m3w2r3+m4w2r4 _________ (1)
The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F

is not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight)
of mass ‘m’ at radius ‘r’ to balance the rotor so that,

MWz +FMewWerz+MsWeri+MiwWera+mwer=0—-—--—-——---—-- (2)
or
Mirg+marp+mgrg+mgrg+mr=0---------------- (3)

The magnitude of either ‘m’ or ‘r’ may be selected and the other can be calculated. In
general, if Zm i Fi is the vector sumof My F;,m, r, , M r;, M4 Iy etc, then,

The above equation can be solved either analytically or graphically.
1. Analytical Method:

Procedure:
Step 1: Find out the centrifugal force or the product of mass and its radius of rotation

exerted by each of masses on the rotating shaft, since W * is same for each mass,
therefore the magnitude of the centrifugal force for each mass is proportional to the
product of the respective mass and its radius of rotation.

Step 2: Resolve these forces into their horizontal and vertical components and find their
sums. i.e.,

Sum of the horizontal components

n

=) mir, cos 8; = mry cos 81 + Myry COS B, + Mar3 COS B3 + - —— — — — — -
i=1

Sumof the vertical components

n

= ) mir; sin 8 = myry Sin B4 + Morp SiN O + Marz sin@z + - ——— - - - -

i=1
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Step 3: Determine the magnitude of the resultant centrifugal force

2 2
R{/ nzmrii cos 6; N nzmrii sing;

i=1 i=1

Step 4: If O is the angle, which resultant force makes with the horizontal, then
"mr sin ©
tan6= =
_mr cos 6

i=1

Step 5: The balancing force is then equal to the resultant force, but in opposite direction.
Step 6: Now find out the magnitude of the balancing mass, such that

R=mr
Where, m = balancing mass and r = its radius of rotation

2. Graphical Method:
Step 1:
Draw the space diagram with the positions of the several masses, as shown.

Step 2:

Find out the centrifugal forces or product of the mass and radius of rotation exerted by
each mass.

Step 3:

Now draw the vector diagram with the obtained centrifugal forces or product of the
masses and radii of rotation. To draw vector diagram take a suitable scale.

Let ab, bc, cd, de represents the forces F1, F¢o, F¢3 and F4 on the vector diagram.
Draw ‘ab’ parallel to force F1 of the space diagram, at ‘b’ draw a line parallel to force
F¢». Similarly draw lines cd, de parallel to F.3 and F.4 respectively.

Step 4:

As per polygon law of forces, the closing side ‘ae’ represents the resultant force in
magnitude and direction as shown in vector diagram.

Step 5:
The balancing force is then , equal and opposite to the resultant force.

Step 6:
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Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ),

such that,
Fo=mw?*r
or
mr=resultantofm; r{ ,m2 r> ,m3 r3 andmg rs
CASE 4:

BALANCING OF SEVERAL MASSES ROTATING IN DIFFERENT PLANES

When several masses revolve in different planes, they may be transferred to a reference
plane and this reference plane is a plane passing through a point on the axis of rotation
and perpendicular to it.

reference plane

//

e
7 )
g

[

/lF

2
(Imaginary)
L Turned through o0 in

the direction of force

e

(Original)
Couple vectors

When a revolving mass in one plane is transferred to a reference plane, its effect is to
cause a force of same magnitude to the centrifugal force of the revolving mass to act in
the reference plane along with a couple of magnitude equal to the product of the force
and the distance between the two planes.
In order to have a complete balance of the several revolving masses in different planes,

1. the forces in the reference plane must balance, i.e., the resultant force must be zero and

2. the couples about the reference plane must balance i.e., the resultant couple must be zero.

A mass placed in the reference plane may satisfy the first condition but the couple
balance is satisfied only by two forces of equal magnitude in different planes. Thus, in
general, two planes are needed to balance a system of rotating masses.
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Example:
Consider four masses mj, mp, m3 and my attached to the rotor at radii ry, rp, r3 and r4
respectively. The masses mj, mp, m3 and my rotate in planes 1, 2, 3 and 4 respectively.

Ve +Ve

D0 @ Dp®

— e i s e o

o

L
13

Lm

L&

b} Angular position of masses

i) position of planes of masses

a) Position of planes of masses

Choose a reference plane at ‘O’ so that the distance of the planes 1, 2, 3 and 4 from ‘O’

are L;, Ly , Lz and L4 respectively. The reference plane chosen is plane ‘L’. Choose
another plane ‘M’ between plane 3 and 4 as shown.

Plane ‘M’ is at a distance of L, from the reference plane ‘L’. The distances of all the
other planes to the left of ‘L’ may be taken as negative( -ve) and to the right may be taken
as positive (+ve).

The magnitude of the balancing masses my, and my in planes L and M may be obtained
by following the steps given below.

Step 1:

Tabulate the given data as shown after drawing the sketches of position of planes of
masses and angular position of masses. The planes are tabulated in the same order in
which they occur from left to right.
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Centrifugal Distance 2

Plane Mass (m) Radius (r) force/w” from Ref. | Couple/ w

1 2 3 (mr) plane ‘L’ (L) (mrL)

6
4 5

1 mi r1 mi 11 -1y -my 11 Ly

L mL L mL L 0 0

2 my 19} m) 1 Ly m2r2 L2

3 mj 13 mj 13 L3 m3 13 L3

M mm ™ mMm M Lm mpy v Lt

4 my I4 my 14 Ly my 14 Ly

Step 2:

Construct the couple polygon first. (The couple polygon can be drawn by taking a

convenient scale)

Add the known vectors and considering each vector parallel to the radial line of the mass
draw the couple diagram. Then the closing vector will be ‘myg ryg L’

rd

- g {c) Couple polygon

{d Force polygon

The vector d o’ on the couple polygon represents the balanced couple. Since the
balanced couple Cyy is proportional to mpg ry; Ly , therefore,
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C =m r L = vectord o
M M M M

or m <=vectordo
§ v Lm

From this the value of my in the plane M can be determined and the angle of inclination
@ of this mass may be measured from figure (b).

Step 3:

Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors along with ‘mp rp’. The closing vector will be ‘my,
rp.’. This represents the balanced force. Since the balanced force is proportional to ‘my,

.,
my r. = vector eo

or m= _vectoreo
L
n

From this the balancing mass my, can be obtained in plane ‘L’ and the angle of
inclination of this mass with the horizontal may be measured from figure (b).

Problems and solutions

Problem 1.

Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The
masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40

mm, 50 mm, 60 mm and 30 mm. The angular position of the masses B, C and D are 60 ,

135 and 270 from mass A. Find the magnitude and position of the balancing mass at a
radius of 100 mm.

Solution:
Given:
. 2
Mass(m) Radius(r) Centrifugal force/w
(mr) Angle( 0)
kg m ke-m
ma = 12 kg rA=0.04m marp = 0.48 kg-m o =0°
A
mp = 10 kg rg =0.05m mprg = 0.50 kg-m S =60°
mc = 18 kg rc=0.06 m mcre = 1.08 kg-m 0, =135"
mp = 15 kg rp=0.03m mprp = 0.45 kg-m 8, =270°

To determine the balancing mass ‘m’ at a radius of r = 0.1 m.

The problem can be solved by either analytical or graphical method.
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Analytical Method:

Step 1:
Draw the space diagram or angular position of the masses. Since all the angular position
of the masses are given with respect to mass A, take the angular position of mass A as Oa

:OO

FcB

Fel

ml

Fell

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated
and tabulated.

Step 2:

Resolve the centrifugal forces horizontally and vertically and find their sum.
Resolving mara, mgrg, mcrc and mprp horizontally and taking their sum gives,

n
> miri cos B =MaracosBa + MgrgcosBs + McrccosBe + Mprpcostp
i=1

= 0.48 x cos 0° + 0.50 x cos 60° + 1.08 x cos135° + 0.45 x cos 270°
= 0.48+ 0.25+(-0.764)+ 0= - 0.034 kg-m - -----—--~ 1)

Resolving mara, mprg, mcre and mprp vertically and taking their sum gives,
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Zmiri sin B; = MarasinB, + mgrgsinbg + Mcresinbe + mprpsinBGp
i=1

= 0.48 x sin 0° + 0.50 x sin 60° + 1.08 x sin135% + 0.45 x sin270°

r

0.1

= 0+ 0.433+ 0.764+ (-0.45)= 0.747kg-m - —----—- -~ )

Step 3:
Determine the magnitude of the resultant centrifugal force

2 2
n n
v Zmrii Ccos ei N Zmrii Sln ei

i=1 i=1

= /(- 0.034)2 + (0.747)% = 0.748kg- m

Step 4:

The balancing force is then equal to the resultant force, but in opposite direction. Now
find out the magnitude of the balancing mass, such that

R=mr = 0.748k%— m0 748
Therefore, m= = . =7.48kg Ans

Where, m = balancing mass and r = its radius of rotation

Step 5:
Determine the position of the balancing mass ‘m’.
If O is the angle, which resultant force makes with the horizontal, then

- 1 ' 0747  _ 5497

ir vUO v

2 i i -0.034
and 6= - 87.4 ° or 92.6°

™M -

tanb= 4

=1 i)

Remember ALL STUDENTS TAKE COPY i.e. in first quadrant all angles
(sin 8, cos O and tan 0 ) are positive, in second quadrant only Sin 0 is positive, in

third quadrant only tan 8 is positive and in fourth quadrant only COS B is positive.

Since numerator is positive and denominator is negative, the resultant force makes with
the horizontal, an angle (measured in the counter clockwise direction)

8 =92.6"
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angle

The balancing force is then equal to the resultant force, but in opposite direction.
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the

of inclination
with  the
horizontal is0
0 =87.4
angle measured
in the
M
clockwise direction.
F[[ R |'* FEB
1
m{ |I
. 5 mB
60 b e=1350
’ ll i f =600
A=t FeA
| mA
i) Space Diagram 30 | 8= 8740
I
1 100

m0

FcD
@L

Graphical Method:

Step 1:

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are

proportional to the product of the mass and its radius, the product ‘mr’ can be calculated
and tabulated.

Draw the space diagram or angular position of the masses taking the actual angles( Since
all angular position of the masses are given with respect to mass A, take the angular

position of mass A as 8 = 0°).
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bl Vector Diagram

Step 2:

Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors as follows.

Draw a line ‘ab’ parallel to force Fca (or the product marp to a proper scale) of the
space diagram. At ‘b’ draw a line ‘bc’ parallel to Fcg (or the product mpgrg). Similarly
draw lines ‘cd’, ‘de’ parallel to Fcc (or the product mcrc) and Fep (or the product

mprp) respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude
and direction as shown on the vector diagram.

Step 3:
The balancing force is then equal to the resultant force, but in opposite direction.
R=mr
R
Therefore, m= =7.48 kg Ans

r
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the

angle of inclination with the horizontal is, Oy = 87.4 0 angle measured in the clockwise
direction.
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Problem 2:

The four masses A, B, C and D are 100 kg, 150 kg, 120 kg and 130 kg attached to a shaft
and revolve in the same plane. The corresponding radii of rotatigns are 22.5 cm, 17.5 cm,

25 cm and 30 cm and the angles measured from A are 450, 1200 and 2550. Find the
position and magnitude of the balancing mass, if the radius of rotation is 60 cm.

Solution:

Analytical Method:

Given:
. Centrifugal force/w
Mass(m) Radius(r) g
ke m (mr) Angle( 0)
kg-m

mp = 100 kg ra=0225m mara=225kgm |0 =0

mp = 150 kg rg=0.175m mprg =26.25kgm | B, = 45°

me = 120 kg rc=0250 m mcre=30 kgm | B, =120°

mp = 130 kg rp = 0.300 m mprp=39kgm | 0, =255°

m =? r=0.60 6 =7

Step 1:

Draw the space diagram or angular position of the masses. Since all the angular position
of the masses are given with respect to mass A, take the angular position of mass A as Oa

= OO
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are

proportional to the product of the mass and its radius, the product ‘mr’ can be calculated
and tabulated.

FeC

mC
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Step 2:

Resolve the centrifugal forces horizontally and vertically and find their sum.

Resolving mara, mprg, mcrc and mprp horizontally and taking their sum gives,

"mr cos® =m rcosB +m rcos® +mr cosB +m r cosb

i i A A A B B B c C Cc D D D
i =1

=22.5xcos 0° + 26.25 x cos 45° + 30 x cos 120° + 39 x cos 255°

=22.5 +18.56 + (-15) + (-10.1) =1597kg-m ---------
(1)

Resolving mara, mprg, mcre and mprp vertically and taking their sum gives,

Zm i T sin ei =Ml sin GA +mgplp SineB + M¢ Ic Sinec +mpyplp SineD
-

=22.5 x sin 0° + 26.25 x sin 45° + 30 x sin 120° + 39 x sin 255°

=0+18.56 + 25.98 + (-37.67)=6.87kg-m --------
-(2)

Step 3:
Determine the magnitude of the resultant centrifugal force

n 2 n 2
R=Ymrcos 6 + Ymrsin®

i=1 i i i=1 i

\/(15.97)* + (6.87)* =17.39 kg - m

Step 4:

The balancing force is then equal to the resultant force, but in opposite direction. Now
find out the magnitude of the balancing mass, such that

R= mr—1739hq ﬁ39

Therefore, m=_ = = 28.98 kg Ans
r0.60

Where, m = balancing mass and r = its radius of rotation

Step 5:
Determine the position of the balancing mass ‘m’.
If O is the angle, which resultant force makes with the horizontal, then
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Zmi riSin ei ~ 6.87

tan 6~ i":1||| 1 N 1
i iCOS 0 5.97

=0.4302

-

and 6= 23.28°

The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the
angle of inclination with the horizontal is, @ = 203.28 0 angle measured in the

counter clockwise direction.

25 em

la Space dingram

Graphical Method:

Step 1:
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated

and tabulated.
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Step 2:

Draw the space diagram or angular position of the masses taking the actual angles (Since
all angular position of the masses are given with respect to mass A, take the angular

position of mass A as 8 = 0°).

Inpln

225m

in) Space dingram Pe ’2
a m_.,r; b

il Vector dingram
Step 3:

Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors as follows.

Draw a line ‘ab’ parallel to force Fca (or the product marp to a proper scale) of the
space diagram. At ‘b’ draw a line ‘bc’ parallel to Fcp (or the product mgrg). Similarly
draw lines ‘cd’, ‘de’ parallel to Fcc (or the product mcrc) and Fep (or the product

mprp) respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude
and direction as shown on the vector diagram.

Step 4:
The balancing force is then equal to the resultant force, but in opposite direction.
R=mr
R
Therefore, m= = 29kg Ans

r

The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the
angle of inclination with the horizontal is, @ = 203 0 angle measured in the counter

clockwise direction.
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Problem 3:
A rotor has the following properties.

Mass magnitude Radius Angle fj’? cfrilflﬁ(iisstt?l?acsz
1 9 kg 100mm | 6, =0° -
2 7 kg 120mm | 0, =60 160 mm
3 8 kg 140mm | 0, =135 320 mm
4 6 kg 120mm | 6, =270 560 mm

If the shaft is balanced by two counter masses located at 100 mm radii and revolving in
planes midway of planes 1 and 2, and midway of 3 and 4, determine the magnitude of the
masses and their respective angular positions.

Solution:

Analytical Method:

Centrifugal Distance w2 Angle
Mass (m) | Radius (1) force/w” from Ref. Couple/
Plane (mrL) 0
1 kg m (mr) plane ‘M’ kg-m”
2 3 kg-m m 6 7
4 5
1 9.0 0.10 myr; =0.9 -0.08 -0.072 0
M myp = ? 0.10 mpg iy = 0.1 my 0 0 B =?
2 7.0 0.12 mry, =0.84 0.08 0.0672 60"
3 8.0 0.14 myr3 =1.12 0.24 0.2688 135"
N my = ? 0.10 my Ny = 0.1 my 0.36 my 1y Iy = 0.036 my By =7?
4 6.0 0.12 mgrgy =0.72 0.48 0.3456 270

For dynamic balancing the conditions required are,

Zmr + Mm I'm +mNrN:0 """"" (l)

Zmr|+ marviv =0

for force balance

for couple balance
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80 120

160 mm
320 mm

560 mm

() Position of planes of masses

Step 1:
Resolve the couples into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

Zmrl cosB + my ry Iy cosBy = 0 Onsubstitution we
get

-0.072 cos 0° + 0.0672 cos 60° + 0.2688cos135°
+0.3456c0s270° + 0.036 my cosBy = O i.e.
0.036 my cosBy = 0.2285- - - - - (1)

Sum of the vertical components gives,

Zmrl sin B+ my ry Iy sinBy = 0 On substitution we
get

- 0.072 sin 0° + 0.0672 sin 60° + 0.2688sin135°

+ 0.3456 sin270° + 0.036 my sinBy = 0 i.e. 0.036 my sin By =
0.09733----- (2)

Squaring and adding (1) and (2), we get
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my fy Iy = 1/(0.2285)2 + (0.09733)2
.e., 0.036my = 0.2484,,

Therefore, fn= —=6.9kg Ans
Dividing (2) by (1), we get

tang = _0.09733 and 9 =23.07°
N 0.2285 N

Step 2:

Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mr cosB+ my ry cosBy + my ry cosy = 0

On substitution we get

0.9 cos 0° + 0.84 cos 60° +1.12 cos135° + 0.72 cos270° +
M fy cosBy + 0.1x6.9xc0s23.07° = 0

i.e. myrycosBy=-1.1629 - - - - - (3)

Sum of the vertical components gives,

> mr sin 6+ my ry sin By + my ry sinBy = 0

On substitution we get

0.9 sin0° + 0.84 sin 60° +1.12 sin135° + 0.72sin270° +
My My SiNBy + 0.1x6.9xsin23.07° = 0

i.e. myrysinBy =-1.0698 - - - - - (4)

Squaring and adding (3) and (4), we get

M T = /(= 1.1629)2 + (- 1.0698)2
i.e., 0.1my =1.580

Therefore, m = 1.580=158 kg Ans
y 0.1

Dividing (4) by (3), we get

tan@ == 1.0698  gnd8=222.61° Ans
L —1.1629 y
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Graphical

mHO Om

(b} Angular position of masses

Solution:

¢

myrgly

d

m313l;

]
marzk

mnl
(1' Lﬁ’o

-
’I

_»~" mNrNly

{c) Couple polygon

g1

{d Force polygon
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Problem 4:
The system has the following data.

The distances of planes in metres from plane A are:

Find the mass-radius products and their angular locations needed to dynamically balance

m =1.2 kg r =1.135m@ <« 113.4°
m =1.8 kg r =0.822m@ - 48.8°
1 2
m = 2.4 kg r =1.04m@ «251.4°
1 3

the system using the correction planes A and B.

Iy =0.854, 1, =1.701,l; = 2.396,lg = 3.097

Solution: Analytical Method
+Ve
RP = | ]
©» O © ¢
- D-BE' -
T D i
23%
il
{n) Position of planes of masses = @ ™
(b} Angular position of masses
Centrifugal Distance 2 Angle
Mass (m) | Radius (r) force/w” from Ref. Couple/
Plane (mrL) 0
1 kg m (mr) plane ‘A’ kg-m”
2 3 kg-m m 6 7
4 5

A mp rA mp rp =7 0 0 Ba =7?
1 1.2 1.135 1.362 0.854 1.163148 113.4°
2 1.8 0.822 1.4796 1.701 2.5168 48.8°
3 2.4 1.04 2.496 2.396 5.9804 251.4°
B mp B mp g =? 3.097 3.097 mg 18 Bg =?
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Step 1:

Resolve the couples into their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

> mrlcos + mg rg Iz cosBs = 0
Onsubstitution we get
1.163148 cos113.4 ° + 2.5168 cos 48.8° +5.9804 cos251.4°
+ 3.097 mgrg cosBg =0
ie.mr cos® =_071166_—— (1)
88 5 3.097

Sum of the vertical components gives,

Y mrlsin® + mg rg Ig sinBs = 0
Onsubstitution we get
1.163148 sin113.4 ° + 2.5168 sin 48.8° +5.9804 sin251.4° +

3.097 mg rg sinBg = 0
2.7069
ie.mgrgsinBg= _ -—----— (2)
3.097
Squaring and adding (1) and (2), we get

+

3.097 3.097
= 0.9037kg—-m

\/0.711662 2.7069%
Mplg [ —_—

Dividing (2) by (1), we get

tang= _ 2.7069 ande=7527° Ans
. 071166 ;

Step 2:
Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,
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Zmr Cc0SO+ mp ra cosBa + mg g cosBg
On substitution we get

1.362 cos113.4 ° + 1.4796 cos 48.8°  +2.496 cos251.4°

+ mMp ry cosB, + 0.9037 cos75.27° =0
Therefore

Ma ra €0SB, = 0.13266—- - - - - - - - - (3)

Sum of the vertical components gives,

> mr sinB+ ma ra sinBa + Mg rg sinBg = 0
On substitution we get

1.362 sin113.4 ° + 1.4796 sin 48.8° + 2.496 sin 251.4°

+mMa ra sinBa + 0.9037 sin75.27° =0
Therefore

Ma Ia SiNBpy = - 0.87162- - - - - - - - - (4)

Squaring and adding (3) and (4), we get

Mata= 1/(0.13266) + (- 0.87162)°
=0.8817 kg- m

Dividing (4) by (3), we get

tang =-0.87162 gnde =-81.35° Ans
A 0.13266 A

Problem 5:

A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200
kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks
measured anticlockwise are A to B 450, B to C 700 and C to D 120 . The balancing
masses are to be placed in planes X and Y. The distance between the planes A and X is
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing
masses revolve at a radius of 100 mm, find their magnitudes and angular positions.
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Graphical solution:

Let, myx be the balancing mass placed in plane X and my be the balancing mass placed in
plane Y which are to be determined.

Step 1:
Draw the position of the planes as shown in figure (a).

g "N

OO @ Op®

1 200

ibl Angular position of masses

i} position of planes of masses

Let X be the reference plane (R.P.). The distances of the planes to the right of the plane X
are taken as positive (+ve) and the distances of planes to the left of X plane are taken as
negative(-ve). The data may be tabulated as shown

Since the magnitude of the centrifugal forces are proportional to the product of the mass
and its radius, the product ‘m r’ can be calculated and tabulated. Similarly the magnitude
of the couples are proportional to the product of the mass , its radius and the axial
distance from the reference plane, the product ‘m r I’ can be calculated and tabulated as
shown.
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Centrifugal Distance w Angle
Mass Radius (r) force/w” from Ref. Couple/
Plane (mrL) 0
1 (m) kg m (mr) plane ‘X’ kg-m”
2 3 kg-m m 6 7
4 5
A 200 0.08 marya =16 -0.10 -1.60 -
X my =? 0.10 my rx =0.1 myx 0 0 Bx =?
B 300 0.07 mprg =21 0.20 4.20 AtoB45
C 400 0.06 mcrc =24 0.30 7.20 BtoC70
Y my =? 0.10 my ry =0.1 my 0.40 my ry ly =0.04 my By =?
D 200 0.08 mp rp = 16 0.60 9.60 CtoD 120
Step 2:
Assuming the mass A as horizontal draw the sketch of angular position of masses as
shown in figure (b).
Step 3:

Draw the couple polygon to some suitable scale by taking the values of ‘m r I’ (column
no. 6) of the table as shown in figure (c).

¢

lll,\l'__\lA

c) Couple polygon

mMmals

=

a

(dl Force polygon

Draw line o’a’ parallel to the radial line of mass mx.

At a’ draw line a’b’ parallel to radial line of mass mp.
Similarly, draw lines b’c’, ¢’d’ parallel to radial lines of masses m¢c and mp respectively.
Now, join d’ to o’ which gives the balanced couple.
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We get, 0.04 my = vector d'0'=7.3kg— m”
or my =182.5 kg Ans

Step 4:

To find the angular position of the mass my draw a line omy in figure (b) parallel to d’o’
of the couple polygon.

By measurement we get Oy =12° in the clockwise direction from m .

Step 5:

Now draw the force polygon by considering the values of ‘m 1’ (column no. 4) of the
table as shown in figure (d).

Follow the similar procedure of step 3. The closing side of the force polygon i.e. ‘e 0’
represents the balanced force.

my ry = vectoreo=35.5kg— m
or my =355kg Ans

Step 6:
The angular position of my is determined by drawing a line omx parallel to the line ‘e 0’
of the force polygon in figure ( b). From figure (b) we get,

By =1 45° , measured clockwise from ma. Ans

Problem 6:

A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 125 mm, 200
mm and 150 mm respectively. The planes in which the masses revolve are spaced 600
mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the
required mass A and relative angular settings of the four masses so that the shaft shall be
in complete balance.

Solution:

Graphical Method:

Step 1:

Let, mp be the balancing mass placed in plane A which is to be determined along with
the relative angular settings of the four masses.

Let A be the reference plane (R.P.).

Assume the mass B as horizontal

Draw the sketch of angular position of mass mp (line ompg ) as shown in figure (b). The
data may be tabulated as shown.
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' Centrifugal force/u)2 Distance Couple/ w2 Angle
Plane Mass Radius (r) (m 1) from Ref. (mrL) 0
1 (m) kg m kg-m plane ‘A’ kg-m”
2 3 4 m 6 7
5
A
(R.P.) mp="? 0.1 mpry =0.1mp 0 0 Bp =7
B 10 0.125 mers =125 0.6 0.75 Bg =0
C 0.2 mcrc =1.0 1.2 1.2 Bc =?
D 4 0.15 mprp = 0.6 1.8 1.08 Bp =?
+ e
RP—-_-
®

600

la) Position of planes of masses

Step 2:

To determine the angular settings of mass C and D the couple polygon is to be drawn first

600

600

as shown in fig (c). Take a convenient scale

Draw a line o’b’ equal to 0.75 kg-m2 parallel to the line omp. At point 0’ and b’ draw
vectors o’c’ and b’c’ equal to 1.2 kg-m  and 1.08 kg-m  respectively. These vectors

intersect at point c’.

mC

1]

b} Angular Position of masses

For the construction of force polygon there are four options.

Any one option can be used and relative to that the angular settings of

mass C and D are determined.
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{c) Couple polygon

: (bl Angular Position of masses
@ mC

Step 3:
Now in figure (b), draw lines omc and omp parallel to o’c’ and b’c’ respectively.

From measurement we get,

Oy =100° and 6. =240° Ans

Step 4:
In order to find mp and its angular setting draw the force polygon as shown in figure (d).

mprg =125
0 < - b
\
my I' \ d
mere=1.0
mp 1p =0.60

C

{d Force polygon
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Closing side of the force polygon od represents the product ma rp . i.e.
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ma ra = 0.70kg-m

Therefore, ma =0-70 =7kg Ans

r
A

Step 5:

Now draw line om parallel to od of the force polygon. By measurement, we get,

B,=155" Ans

Problem 7:
A shaft carries three masses A, B and C. Planes B and C are 60 cm and 120 cm from A.
A, B and C are 50 kg, 40 kg and 60 kg respectivelg at a radiug of 2.5 cm. The angular

position of mass B and mass C with A are 90 and 2100 respectively. Find the
unbalanced force and couple. Also find the position and magnitude of balancing mass
required at 10 cm radius in planes L and M midway between A and B, and B and C.

Solution:
Case (i):
' Centrifugal force/w” | Distance Couple/ w” Angle
Plane Mass Radius (r) (mr) from Ref. (mrL) 3]
(m) kg m kg-m plane ‘A’ kg-m”
2 3 4 m 6 7
5
50 0.025  |mata =125 0 0 8 =0
A
40 0.025 |mprg =100 0.6 0.6 0, =90’
60 0.025 |mcre =150 1.2 1.8 0, =210

Analytical Method

Step 1:

Determination of unbalanced couple

Resolve the couples into their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

> mrl cosB= 0.6 cos 90 ° + 1.8cos 210° = -1.559- - - — - (1)

Sum of the vertical components gives,

> mrlsin8=0.6 sin90° + 1.8 sin210° = -0.3- - - - - (2)
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Squaring and adding (1) and (2), we get

Cunatanced = \(-1.559)% + (-0.3)?
= 1.588 kg— m?

Step 2:
Determination of unbalanced force

Resolve the forces into their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

Y mrcosB= 1.25cos 0 ° +1.0 cos 90° +1.5 cos210°
=1.25+ 0+ (-1.299)= —0.049— — — — - — — — — 3)

Sum of the vertical components gives,

> mrsin® = 1.25 sin 0 ° + 1.0 sin 90° +1.5 sin 210°
=0+1.0+(-0.75)=0.25- - - - - - - — - (4)

Squaring and adding (3) and (4), we get

Funbaianced = 1/(-0.049)? + (0.25)?
=0.2548 kg—- m

Graphical solution:

60 am it} Angular Position of masses

\o) Position of planes of masses
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\ b
z
1.5
0.6 ¢
o : 1.00
) o Unbalanced force
, 125
c Unbalanced couple o a
Force polygon
Couple polygon
Case (ii):
VE +VE

30 I 30 | 0 A O

Itk Angular Position of masses

60 60

i) Position of planes of masses

To determine the magnitude and directions of masses mys and my .

Let, m, be the balancing mass placed in plane L and my be the balancing mass placed in
plane M which are to be determined.

The data may be tabulated as shown.
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Centrifugal Distance
Mass Radius (r) force/w from Ref. Couple/w
Plane (mrlL) Angle
1 (m) kg m (mr) plane ‘L’ kg-m”“ 8]
2 3 kg-m m 6
4 5 -
A 50 0.025 mara =125 -0.3 -0.375
L —n 0.1 a =0"
(R.P.) mp =7 0.10 Amp 0 0 NI
B 40 0.025 mgrg =1.00 0.3 0.3
M | mu=? 0.10 0.1 my 0.6 0.06 my o =90
C 60 0.025 mcrc =1.50 0.9 1.35 Im =7
6c =210

Analytical Method:

Step 1:

Resolve the couples into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mrl cosB+ my ry ly cosBy =0 On
substitution we get

-0.375cos 0%+ 0.3 cos 90° + 0.06 my, cosBy +1.35 cos 210° =0 i.e. -
0.375 + 0+ 0.06 my, cosBy + (-1.16913)= 0

0.06 my, cosBy =1 15&%19

mw cosbw= ———

Sum of the vertical components gives,

> mrl sinB+ my ry ly sinBy = 0 On
substitution we get

-0.375sin 0 ° + 0.3 sin 90° + 0.06 my sinBy +1.35sin 210°=0i.e. 0 +
0.3+ 0.06 my sinBy + (-0.675)= 0

0.06 my; sinBy = 0.375

m sinB _Y.9/9
M M 0.06

Squaring and adding (1) and (2), we get
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(m ,cosB , )* +(m,sin® )  =(25.74)*+(6.25)* = 701.61
ie.m? = 701.61 and m  =26.5kgAns
M
Dividing (2) by (1), we get

tan@ =-_ 625 and6=13.65° Ans
w  25.74 y

Step 2:
Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

Zmr cosB+ my r. cosB, + my ry cosBy =0

On substitution we get

1.25 cos 0+ 0.1m_ cosB, +1.0 cos 90° + 2.649 cos13.65° + 1.5cos 210°=0
1.25+ 0.1m_ cosB, + 0+ 2.5741+ (-1.299) = 0

Therefore
0.1m cosB, +2.5251 =0
-2.5251
and m_ cosB, = T =—25251— - — — = — — — — (3)

Sum of the vertical components gives,

Zmr sinB+ my r_ sinB. + my ry sinBy =0
On substitution we get
1.25 sin 0 ® + 0.1my_sinB_ +1.0 sin 90° + 2.649 sin13.65° + 1.5sin 210° = 0
0+ 0.1m_ sinB_ + 1+ 0.6251+ (-0.75) = 0
Therefore
0.1m_ sinB_ + 0.8751=0
and msing  =—0.8751 =-8.751--—-—-——- (4)
- t 0.1
Squaring and adding (3) and (4), we get

(m ) cosb L )+ (mL sin® ) P =(-25.251)* + (-8.751)* = 714.193
ie.m? = 714.193 and m =26.72 kg Ans

L L

Dividing (4) by (3), we get
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tan® L=ﬂ and® | =19.11°Ans

-25.251

The balancing mass my  is at an angle 19.1 10 + 1800 =199.1 10 measured in counter
clockwise direction.

Graphical Method:

0.3

0.375

A

0.06 my

COUPLE POLYGON

0.1 my
1.5

1.0
0.1 mg

Y

1.25
FORCE POLYGON

Mg

my,

I} Angulor Position of masses
g
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Problem 8:

Four masses A, B, C and D are completely balanced. Masses C and D make angles of 900

and 210 respectively with B in the same sense. The planes containing B and C are 300
mm apart. Masses A, B, C and D can be assumed to be concentrated at radii of 360 mm,

480 mm, 240 mm and 300 mm respectively. The masses B, C and D are 15 kg, 25 kg and
20 kg respectively. Determine 1) mass A and its angular position ii) position of planes A

and D.

Solution:

Step 1:

Draw the space diagram or angular position of the masses. Since the angular position of
the masses C and D are given with respect to mass B, take the angular position of mass B

as8, =0".

Analytical Method

Tabulate the given data as shown.

‘ Centrifugal force/w” | Distance Couple/ w Angle

Plane Mass Radius (1) (m ) from Ref. (mrL) 0

1 (m) kg m kg-m plane ‘A’ kg-m”

2 3 4 m 6 7

A
(RP.) mp="? 0.36 mars =0.36mp 0 Ba =?

B 15 0.48 mgrg =7.2 Ig="? 721g Bg =0

C 25 0.24 mere = 6.0 lc="? 6.0 1c 0. =90

D 20 0.30 mp rp = 6.0 Ip=" 6.01p 9, =210

{n} Position of planes of masses (Assumed)

mD

210.4-

90

rB

bl Angular position of masses
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Step 2:
Mass mp be the balancing mass placed in plane A which is to be determined along with
its angular position.

Refer column 4 of the table. Since mp is to be determined ( which is the only unknown) ,resolve
the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

>mrcosO=mary, cosBy +mgrg cosBg +mc rc cosOc +mp rp cos Bp =
0

On substitution we get
0.36 m 5 cos 6, + 7.2 cos 0° + 6.0 cos 90° + 6.0 cos 210° =0
Therefore

036 mjy cosBy =-2004--------- (1)

Sum of the vertical components gives,

Y mrsin 8 = ma ra sinBa + Mg rg sinBg + Mg ¢ sinBc + Mp Ip sinBp = 0 On
substitution we get
0.36 ma sinBa + 7.2 sin0° + 6.0 sin90° + 6.0 sin210° = 0 Therefore
0.36 mp sinBp=-3.0-------—-~- (2)
Squaring and adding (1) and (2), we get
2 2 _(_ 2, (202 =
0.36° (ma) 13§01%.004) (-3.0)°=13.016

Mma = =10.02 kg Ans

Dividing (2) by (1), we get

tan® , =30 4nd Resutitant makes an angle = 56.26 °

-2.004
The balancing mass A makes an angle of 6, =236.26° Ans
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Step 3:
Resolve the couples into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

0= 0 + 0 + 0 + 0
> mrlcos mparalacos , mgrglgcos g mgrclccos ¢ mprplpcos o 0
On substitution we get

0+7.21g cos0® +6.01c cos 90° +6.01p cos 210° =0
7215 -519621p =0 -----cuuu-- (3)

Sum of the vertical components gives,

> mrisin@=mp ry lo sinBy +mg rg g sinBg +me rc Ic sinBc +mp rp Ip sinBp =0

On substitution we get
0+7.2lg sin0® +6.01c sin90° +6.01 sin210° =0

But from figure we have, Ic = Ig + 0.3
On substituting this in equation (4), we get
6.0(lg +03)-31p =0
i.,e.6.0lg -31p =1.8-=-=--==---- (5)

Thus we have two equations ( 3) and (5), and two unknowns | g
,Up7.21g-519621p=0----------- (3)

6.0lg -31lp =18----cucnn-- (5)
On solving the equations, we get

lp =—1.353 mand lg =-0.976 m

As per the position of planes of masses assumed the distances shown are positive (+ ve )

from the reference plane A. But the calculated values of distances Ig and Iy are negative.
The corrected positions of planes of masses is shown below.
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© © @

03m

RP

@

lb = -0976 m

ld=-1353m

la) Position of planes of masses (Corrected)

m0

mA

[

236.26 B

rD
rA

(b} Angular position of masses (Finall
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BALANCING
OF
RECIPROCATING MASSES

SLIDER CRANK MECHANISM:

PRIMARY AND SECONDARY ACCELERATING FORCE:

Acceleration of the reciprocating mass of a slider-crank mechanism is given by,

a, = Acceleration of piston

cos 02
=rm cosO+ —  —————(1)
I n
Where n = -
r

And, the force required to accelerate the mass ‘m’ is

5 cos 2 0
F:.mrco cosO+
1
n
cos20
=mr @ cosO + mr @, ——— ——————— 2)
n
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The first term of the equation (2) , i.e. mr ®” cos0 is called primary accelerating force

cos20

the second term mr is called the secondary accelerating force.
n

Maximum value of primary accelerating force is mr N
mr (:

And Maximum value of secondary accelerating force is
n

Generally, ‘n’ value is much greater than one; the secondary force is small compared to

primary force and can be safely neglected for slow speed engines.

FSZ F34

mrtr)2 cosh

4 ]
mre” cosf
0 0
{ mro? cosé Primary
! Vg4
\ Inertia  Force B accelerating force
{unbalanced)

Figure (a)

In Fig (a), the inertia force due to primary accelerating force is shown.

! Y/

Figure (b)
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In Fig (b), the forces acting on the engine frame due to inertia force are shown.

At ‘O’ the force exerted by the crankshaft on the main bearings has two components,

. h .
horizontal F21 and vertical F21V .

h . . L
F21 is an horizontal force, which is an unbalanced shaking force.

F21V and F41v balance each other but form an unbalanced shaking couple.

The magnitude and direction of these unbalanced force and couple go on changing with
angle 0. The shaking force produces linear vibrations of the frame in horizontal direction,
whereas the shaking couple produces an oscillating vibration.

The shaking force F21h is the only unbalanced force which may hamper the smooth

running of the engine and effort is made to balance the same.
However it is not at all possible to balance it completely and only some modifications can
be carried out.

BALANCING OF THE SHAKING FORCE:

Shaking force is being balanced by adding a rotating counter mass at radius ‘r’ directly
opposite the crank. This provides only a partial balance. This counter mass is in addition
to the mass used to balance the rotating unbalance due to the mass at the crank pin. This
is shown in figure (c).

|
mrm cosB mro cosh
Primary force

Figure (c)

mro sind
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The horizontal component of the centrifugal force due to the balancing mass is mr o
c0s0 and this is in the line of stroke. This component neutralizes the unbalanced

reciprocating force. But the rotating mass also has a component mr ®” sin 0
perpendicular to the line of stroke which remains unbalanced. The unbalanced force is

0 0 . . . 0
zero at 0 = 0 or 180 and maximum at the middle of the stroke i.e. 6 = 90 . The
magnitude or the maximum value of the unbalanced force remains the same i.e. equal to

mr ® . Thus instead of sliding to and fro on its mounting, the mechanism tends to jump
up and down. )

To minimize the effect of the unbalance force a compromise is, usually made, is _of the
3
1 3

reciprocating mass is balanced or a value between to_ . _
2 4
If ‘c’ is the fraction of the reciprocating mass, then
The primary force balanced by the mass=c mr w 2 cos 6
and

The primary force unbalanced by the mass = (1 -¢) mr w . cos 6

Vertical component of centrifuga | force which remains unbalanced
4, cmrw: sin O

In reciprocating engines, unbalance forces in the direction of the line of stroke are more
dangerous than the forces perpendicular to the line of stroke.

Resultant unbalanced force at any instant

| s 1 [(1 - ¢)mr w: cos 6]* + [c mr w: sin 6]?

1

The resultant unbalanced force is minimum when, €= "7

This method is just equivalent to as if a revolving mass at the crankpin is completely
balanced by providing a counter mass at the same radius diametrically opposite to the

crank. Thus if myp is the mass at the crankpin and ‘¢’ is the fraction of the reciprocating
mass ‘m’ to be balanced , the mass at the crankpin may be considered as ¢cm +mp which
is to be completely balanced.
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Problem 1:

A single —cylinder reciprocating engine has a reciprocating mass of 60 kg. The crank
rotates at 60 rpm and the stroke is 320 mm. The mass of the revolving parts at 160 mm
radius is 40 kg. If two-thirds of the reciprocating parts and the whole of the revolving
parts are to be balanced, determine the, (i) balance mass required at a radius of 350 mm

and (ii) unbalanced force when the crank has turned 500 from the top-dead centre.

Solution:

Given : m = mass of the reciprocating parts = 60 kg N =
60 rpm, L = length of the stroke = 320 mm mp =

2
40 kg, c=" 3, rc=350 mm

(1) Balance mass required at a radius of 350 mm

2nN 2nx60
Wehave, ©= 60~ o ~2Mradss
L 320
r= 2= 2 =160 mm

Mass to be balanced at the crank pin =M

2
M=cm+mp = 3 x60+40=280Kkg

Mr
q m,r.=Mr therefore m _=
an I
_ 80 x 160 ‘
i.e.m = =36.57 kg
c 350

(i1) Unbalanced force when the crank has turned 5 00 from the top-dead centre.

Unbalanced force at 6 =50 o

~J[(1 - ¢)mr @ cos 6]2 +[c mr w: sin 8]

J 2 2 O | 2

= 1- = x 60 x 0.16 x (2n) cos 50 + —_-
3 3

3.209.9 N

2
X 60 x 0.16 x (2n) sin50
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Problem 2:

The following data relate to a single cylinder reciprocating engine:
Mass of reciprocating parts = 40 kg

Mass of revolving parts = 30 kg at crank radius

Speed = 150 rpm, Stroke = 350 mm.

If 60 % of the reciprocating parts and all the revolving parts are to be balanced, determine
the,

¢) balance mass required at a radius of 320 mm and (ii) unbalanced force when
the crank has turned 450 from the top-dead centre.

Solution:

Given : m = mass of the reciprocating parts = 40 kg
mp =30 kg, N =150 rpm, L =length of the stroke = 350 mm

=60% ,r.=320mm

= Balance mass required at a radius of 350 mm

w=2NN -2nx150 _ 15,7 rad/s
We have, 60 60
r=L-350_175 mm
2 2

Mass to be balanced at the crank pin =M
M=cm+mp =0.60 x40 + 30 = 54 kg

mc.rc =Mr therefore m¢ = M,—r
and c
ie.m =24X175-29.53 kg
320

(i1) Unbalanced force when the crank has turned 450 from the top-dead centre.

Unbalance d force at 6 =45,

= \/[(1 — ¢ )mr w2 cos B]? +[c mr w 2 sin 8]?

= .I[(1 - 0.60)x 40 x 0.175 x (15.7): cos 45 o |* + [0.60 x 40 x 0.175 x (15.7): sin 45 © |2
=880.7 N
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SECONDARY BALANCING:

S

CoS

Secondary acceleration force is equal tomr .  —————— (D)
n

Its frequency is twice that of the primary force and the magnitude p timgs the
magnitude of the primary force.
cos 20

The secondary force is also equal to mr 2®). —————— )

Consider, two cranks of an engine, one actual one and the other imaginary with the
following specifications.

Actual Imaginary
2
Angular velocity Q) )
Length of crank r r
4n
Mass at the crank pin m m

lm
1111'( )zcos 206
4n
m r o’
= [ Jcos 20
mr o cos 1
Primary force Secondary force
Primary crank Secondary crank

Thus, when the actual crank has turned through an angle @ = t , the imaginary crank
would have turned an angle 20 =2 ® t
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mr (_2 w )2
Centrifugal force induced in the imaginary crank = —=
4n
mr2e )2
Component of this force along the line of stroke is = —=
cos264n
Thus the effect of the secondary force is equivalent to an imaginary crank of length
r
4n

rotating at double the angular velocity, i.e. twice of the engine speed. The imaginary
crank coincides with the actual at inner top-dead centre. At other times, it makes an angle
with the line of stroke equal to twice that of the engine crank.

The secondary couple about a reference plane is given by the multiplication of the
secondary force with the distance ‘ 1’ of the plane from the reference plane.

COMPLETE BALANCING OF RECIPROCATING PARTS

Conditions to be fulfilled:

3. Primary forces must balance i.e., primary force polygon is enclosed.

4. Primary couples must balance i.e., primary couple polygon is enclosed.

5. Secondary forces must balance i.e., secondary force polygon is enclosed.

6. Secondary couples must balance i.e., secondary couple polygon is enclosed.

Usually, it is not possible to satisfy all the above conditions fully for multi-cylinder
engine. Mostly some unbalanced force or couple would exist in the reciprocating engines.

BALANCING OF INLINE ENGINES:

An in-line engine is one wherein all the cylinders are arranged in a single line, one behind
the other. Many of the passenger cars such as Maruti 800, Zen, Santro, Honda-city,
Honda CR-V, Toyota corolla are the examples having four cinder in-line engines.

In a reciprocating engine, the reciprocating mass is transferred to the crankpin; the axial
component of the resulting centrifugal force parallel to the axis of the cylinder is the
primary unbalanced force.

Consider a shaft consisting of three equal cranks asymmetrically spaced. The crankpins
carry equivalent of three unequal reciprocating masses, then
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I

m, 1, cos6 Line of stroke

Primary force=2 mrw: coSO ————————————— (1)

Primary couple=2 mrw: 1cos® ————————————— (2)
(2w)?

Secondary force=2 mr 4 0528 - - (3)

2
And Secondary couple=2 mr Qo) | cos 26

4n
2

= ZMro—1cos20 -~ (4)

GRAPHICAL SOLUTION:

To solve the above equations graphically, first draw the 2. m r cos 8 polygon ( @’ is common to all forces). Then the axial
component of the resultant forces

multiplied by o’ provides the primary unbalanced force on the system at that (F'y cos0)
moment.
This unbalanced force is zero when 6 =90° and a maximum when 6 =0° .
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If the force polygon encloses, the resultant as well as the axial component will always be
zero and the system will be in primary balance.
Then,

FFPh =0 and z Fev =0

To find the secondary unbalance force, first find the positions of t()e m‘3g1nary secondary cranks.

Then transfer the reciprocating masses and multiply the same by or @, .

4n n

to get the secondary force.
In the same way primary and secondary couple ( m r | ) polygon can be drawn for
primary and secondary couples.

Case 1:
IN-LINE TWO-CYLINDER ENGINE

. . 0 . .
Two-cylinder engine, cranks are 180  apart and have equal reciprocating masses.

mro
/ 1 o
mr

(2)

"""""""""" =© ib! Primary Force Polygon

- —— ==

{n) Primary cranks

mr' |l cos @

ic) Primary couple Polygon
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VTU EDUSAT PROGRAMME-17

Refrerence plane =
------------------------ mr o

2
360°+26 .

cosEE‘J

n

mro 1 28
{o) Secondary cranks n 2
(1)
mr o’ _l_
n 2

(2)

ic} Secondary couple Polygon

Taking a plane through the centre line as the reference plane,

Primary force =m r w: [cos 6 + cos (180 +6 )]=0

2 | I

2
Primary couple=mr w — COs 6 + - "= cos(180 +6) =mrw I cos 6
2

Maximum values are m r @ | at®=0, and 180o

) 2mMmrw,
Secondary force = mrw [COS 2 0 +cos (3 60+2 9)]:
n n

Maximum values are 2m r @®> when 26=0°,180° , 360 ° and 540 °
n or06=0.,90,,180, and 270,
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ro. | |

Secondary couple = 2 _ c0529+—3cos(360+29):0
n 2

ANALYTICAL METHOD OF FINDING PRIMARY FORCES AND COUPLES

=First the positions of the cranks have to be taken in terms of 6 o

=The maximum values of these forces and couples vary instant to instant and are equal to
the values as given by the equivalent rotating masses at the crank pin.

If a particular position of the crank shaft is considered, the above expressions may not
give the maximum values.
For example, the maximum value of primary couple is m r w?|  and this value is

obtained at crank positions 00 and 180 . However, if the crank positions are assumed
at 90 and 270 , the values obtained will be zero.

= If any particular position of the crank shaft is considered, then both X and Y
components of the force and couple can be taken to find the maximum values.

For example, if the crank positions considered as 1200 and 3000, the primary couple
can be obtained as

I 0 I

2 0 0
X — component=mr w —zcos 120 + -7 cos(180 + 120 )

1
3.-27mrw: |

-
Y —component =m rw sin120 - 2 sin (180 +120

J

\2 mrw:l

2 P4
1 ﬂm 2
Primary couple = — 2l o+ rol

Therefore,

= mr w: |

Case 2:
IN-LINE FOUR-CYLINDER FOUR-STROKE ENGINE

MALLAREDDY ENGINEERING COLLEGE(Autonomous)



This engine has tow outer as well as inner cranks (throws) in line. The inner throws are at

180 to the outer throws. Thus the angular positions for the cranks are 6 o for the first,
180, + 0. forthesecond, 180 + 8 o for the third and 8 o for the fourth.

ib} Primary force polygon

3 .
2
fc} Primary couple polygon
1

i) Primary cranks

360°+ 26

Reference plane

360°+ 20
3 /
2 /
~
-
~ 3

ic) Secondary couple polygon

(o} Secondary cranks
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FINDING PRIMARY FORCES, PRIMARY COUPLES, SECONDARY
FORCES AND SECONDARY COUPLES:

Choose a plane passing through the middle bearing about which the arrangement is
symmetrical as the reference plane.

Primary force=mr w:[cos 8 + cos (1800 +6 )+ cos (1800 +6 ) + cos 8 |
=0

3l cos 0 +!cos (180 °+0)

Primary couple =mrw ° 2| 2 31
+- —cos (1800 +0) + - ——C0s B0
2 2
=0
Secondary force = mrw2c0526+cos(3600 + 20)
n +cos(3600+206)+c0s286
4 MmMrw
p £co0s206n

rw

Maximum value = 2

n
at206=00,1800,3600and5400 or

6=00,900,1800and2700

3l | 0

2 €0s26 + =——c0s(360 +20)

Secondary couple =

0
+ - —cos(360 +28) +-—
2 2

Thus the engine is not balanced in secondary forces.

c0s26
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Problem 1:

A four-cylinder oil engine is in complete primary balance. The arrangement of the
reciprocating masses in different planes is as shown in figure. The stroke of each piston is
2 r mm. Determine the reciprocating mass of the cylinder 2 and the relative crank

position.

;4 480k
3m
3 590 kg
28m
i mz2
13m
1 380 kg
Solution:
Given :
m;=380kg, my=?,m3=590kg, m;=480kg
crank length= L =21 _r
2 2
Cent. Distance Couple/ ”
Mass (m) | Radius (r) Force/o” from Ref (mrl)
Plane z
kg m (mr) plane ‘2’ kg m
kg m m
1 380 r 380 r -1.3 -494 r
2(RP) m2 r mzr 0 0

3 590 r 590 r 2.8 1652 r
4 480 r 480 r 4.1 1968 r
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Analytical Method:
Choose plane 2 as the reference plane and 053 =0°.

Step 1:
Resolve the couples into their horizontal and vertical components and take their sums.

Sum of the horizontal components gives

494 r cos 0+ 1652 rcos 0 ° + 1968 rcos 0 =0
1 4
i.e., +494 cos 0, =1652 + 1968 cos 6, ——— — ——— — — (D)

Sum of the vertical components gives

—494rsin0+1652rsin 0%+ 1968 rsin 0 =0
1 4
i.e., 494 sin 6, =1968 sin6, ————— —— — — 2)

Squaring and adding (1) and (2), we get

(494)? = (1652 + 1968 cos 8 4)* + (1968 sin 8 4 )?

i.e.,

(494). =(1652 ). + 2 x 1652 x 1968 cos 6 4+ (1968 cos 8 4 )* + (1968 sin 8 4
)? On solving w e get,

cos B84 =-0.978 and B4 =167.9, or 192.1,

Choosing one value, say 8 ,=167.90

Dividing (2) by (1), we get

1968 sin(167.9 o) +412.53
1652 + 1968 cos (167.9,) -272.28
i.e., 8, =123.4,

tan 64 = =1.515

Step 2:

Resolve the forces into their horizontal and vertical components and take their sums.

Sum of the horizontal components gives

380 r cos(123.40) +m r cos 0 + 590 rcos 0o +480rcos(167.9, ) =0
2 2
orm, cos, =885 - ———————————— 3)
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Sum of the vertical components gives

380 r sin(123.40 ) +m r sin 0 Jg 590 r sin0s +480rsin(167.9, ) =0
orm, sin, =-4179-----—-———————— 4)
Squaring and adding (3) and (4), we get

m, =427.1 kg Ans

_ -417.9 __
Dividing (4) by (3), we get tanez_ 88.5 4

or 8,=282° Ans

165"
\Qh"a L 4BOKg
®  S0kg
3

2820

Relative crank positions

Graphical Method:

Step 1: Draw the couple diagram taking a suitable scale as shown.
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This diagram provides the relative direction of the masses

Step 2: Now, draw the force polygon taking a suitable scale as shown.

m,r;, (590r)

Force dingram m; ,m; and my

This gives the direction and magnitude of mass mo.

The results are:

26 =1680, 0 =123, 0 =282
1 2

4

m, r=427r or m, =427 kg Ans
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Problem 2:

Each crank of a four- cylinder vertical engine is 225 mm. The reciprocating masses of the
first, second and fourth cranks are 100 kg, 120 kg and 100 kg and the planes of rotation
are 600 mm, 300 mm and 300 mm from the plane of rotation of the third crank.
Determine the mass of the reciprocating parts of the third cylinder and the relative
angular positions of the cranks if the engine is in complete primary balance.

Solution:
Given :
r=225mm
m; =100 kg, m, =120 kg and m; =100 kg
Cent. , Distance Couple/ o
Mass (m) Radius (r) Force/o from Ref (mr l )
Plane
kg m (mr) plane 2’ kg m"
kg m m
1 100 0.225 22.5 -0.600 -13.5
2 120 0.225 27.0 -0.300 -8.1
3(RP) m3 0.225 0.225 m3 0 0
4 100 0.225 22.5 0.300 6.75
100 kg

/
/1.

300 mm
120 kg
600 mm
100 kg
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Analytical Method:

Choose plane 3 as the reference plane and 0, =0°.
Step 1:

Resolve the couples into their horizontal and vertical components and take their sums.
Sum of the horizontal components gives

~13.5 cos 0° —8.1 cos 0, + 6.75 cos 0 , =
0i.e., —8.1 cos 0, =— 6.75 cos 04 +13.5

i.e., 8.1 cos0, =6.75cos 6,—13.5————— (1)

Sum of the vertical components gives

~13.5sin0°-8.1sin 6 .+ 6.75sin H ,= 0
i.e,, 8.1sin0, =6.75sin Oj—————— 2)

Squaring and adding (1) and (2), we get
(8.1): =(6.75cos 6 -13.5), +(6.75 sin B )2

65.61 = 45.563co0s .0 4 —182.25 cos 6 4 +182.25 +45.563sin 26 4
1 45.563(c0s%0 4 + sin %0 4) — 182.25 cos 6 4 +182.25
1 45.563-182.25 cos 64 +182.25

i.e., 182.25 cos 64 =45.563 +182.25-65.61 =162.203

Therefore, cos 6 4 =_162.203 and @, =27.13, Ans
182.25

Dividing (2) by (1), we get

tan ez _ 6.75 sin (2713 0) _ 3.078 -1.515

6.75 cos (27.13 0) -13.5 -7.493

i.e., 92 =-22.330+ 1800 =157.67

Step 2:
Resolve the forces into their horizontal and vertical components and take their sums.

Sum of the horizontal components gives
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22.5cos (00)+2 7 cos (157.67 0 ) + 0.225 m cos 6+22.5 cos ( 27.13.)=0
i.e., 22.5-24.975 +0.225 m3 cos 8 3 +20.02 =0
i.,e., 0.225m3cosB3 =-17545--—---———————— (3)
And sum of the vertical components gives

22.5sin (0o) +27 sin (157.67 0 ) + 0.225 m sin 8 +22.5sin ( 27.13 0 ) =0

3 3

i.e., 10.258 +0.225 m3sin 83 + 10.26 =0
i,e., 0.225ms3sin®3 =--20518 - - - -\ -\ ———————— (4)
Squaring and adding (3) and (4), we get

(0.225 ). m.=( -17.545), +( -20.518),
—17.545 , -20.518
e, mz=|— —

+
0.225 0.225
~119.98 kg ~ 120 kg  Ans

o -20.518
Dividing (4) by (3), we get tanB; = -17.545

or 8 ,=229.5. Ans

L 100 kg

229,50

{'l

/ { 100kg
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Problem 3:

The cranks of a four cylinder marine oil engine are at angular intervals of 900. The engine
speed is 70 rpm and the reciprocating mass per cylinder is 800 kg. The inner cranks are 1
m apart and are symmetrically arranged between outer cranks which are 2.6 m apart.
Each crank is 400 mm long.

Determine the firing order of the cylinders for the best balance of reciprocating masses
and also the magnitude of the unbalanced primary couple for that arrangement.

Analytical Solution:

Given :

2nN
==800kg, N=70rpm,r=04m,wo="""=733rad/s60

mrw: =800x0.4x(7.33): =17195

Note:

There are four cranks. They can be used in six different arrangements as shown. It
can be observed that in all the cases, primary forces are always balanced. Primary
couples in each case will be as under.

1 2 3
L g g
T 1.0 26
1.8
0.8
— — —_— {RP} o
m

Taking 1 as the reference plane,

Firing order

1432

Figure loJ
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=mr o \

(-15 )+ Flﬂl?mm—(—l.s)z +({).zs —25)

1 43761 Nm
C, ¢=C,; =43761 Nm only, since 1 , and 1 , are int erchanged C,

) =mr o\ (—Wﬁﬁ% 17195 (fﬁ-ﬁ-)%(ﬁﬂfl—&);

47905 Nm
Cys =C,, =47905 Nm only, sincel, andl; are int erchanged

Cp=mra:y (=1, ) +(14-15) =[7195 (- 0.8)* +(2.6 -1.8)
p 19448 Nm
Cps = C,3 =19448 Nm only, sincel, and I; are int erchanged

Thus the best arrangement is of 3rd and 4th. The firing orders are 1423 and 1324

respectively.
Unbalanced couple = 19448 N m.

Graphical solution:

18 oA
1 o
i 2l gq0
L6 = .
& = "
18 i ﬁA
Jf
#
Figure 11
|
I o \\,
r’ ]
AT | :
’,r’ 3 26 || om
i ol
e S o 18
‘_.?_E: 3
— "
Figure & Figure B
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Case 3:
SIX — CYLINDER, FOUR -STROKE ENGINE

Crank positions for different cylinders for the firing order 142635 for clockwise rotation
of the crankshaft are, for

First  =0" Second 6 =240" And
1
Third—0=120" Eourth 2 =120, My =M, =M3 =My =Ms =M
3 4
Fifth  =240° Sixth 6 =0° M1 =r2 =3 =r4 =fs =Te
5 6

Since all the force and couple polygons close, it is inherently balanced engine for primary
and secondary forces and couples.

(b} Force polygon
6

ic) Couple polygon

{) Primary cranks
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VTU EDUSAT PROGRAMME-17
1209 6 :

2
2400
ﬂ (b} Force polygon
,a 2400 Reference Plane
A

; / 5
/ 3 \
1200 2
<v\ 1 -
- 6

/

ln) Secondary cranks c) Couple polygon

o~

!

Problem 1:

Each crank and the connecting rod of a six-cylinder four-stroke in-line engine are 60 mm
and 240 mm respectively. The pitch distances between the cylinder centre lines are 80
mm, 80 mm, 100 mm, 80 mm and 80 mm respectively. The reciprocating mass of each
cylinder is 1.4 kg. The engine speed is 1000 rpm. Determine the out-of-balance primary
and secondary forces and couples on the engine if the firing order be 142635. Take a
plane midway between the cylinders 3 and 4 as the reference plane.

Solution:

Given :
> =60 mm , | = connecting rod length = 240 mm , m = reciprocat

ing mass of each cylinder =1.4 kg , N = 1000 rpm

2nN 2 1
W e have, w = " = I1X000=104.72rad/s

60 60
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Cent. Distance Couple/ ®
Radius (r) Force/o” from Ref (mrl)
Plane Mass (m) kg m (mr) plane 2’ ke m?
kg m m
1 1.4 0.06 0.084 0.21 0.01764
2 1.4 0.06 0.084 0.13 0.01092
3 1.4 0.06 0.084 0.05 0.0042
4 1.4 0.06 0.084 -0.05 -0.0042
5 1.4 0.06 0.084 -0.13 -0.01092
6 1.4 0.06 0.084 -0.21 -0.01764
Graphical Method:
Step 1:

Draw the primary force and primary couple polygons taking some convenient scales.
Note: For drawing these polygons take primary cranks position as the reference

N

(b} Force polygon

80 mm

80 mm

100 mm NO UNBALANCED

200 Reference plane PRIMARY FORCE

b

N

ic) Couple polygon

80 mm

80 mm

NO UNBALANCED

Pri k
o) Primary cranks PRIMARY COUPLE

DYNAMICS OF MACHINES 26 VIJAYAVITHAL BONGALE
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80 mm

Step 2:

Draw the secondary force and secondary couple polygons taking some convenient scales.
Note: For drawing these polygons take secondary cranks position as the reference

80 mun I
AN
80 mm < 2
2400
100 mm 3 Reference Plane
2400
80 mum
/ fo) Secondary cranks
Problem 2:

(b} Force polygon

NO UNBALANCED
SECONDARY FORCE

£l

ic) Couple polygon

NO UNBALANCED
SECONDARY COUPLE

The firing order of a six —cylinder vertical four-stroke in-line engine is 142635. The
piston stroke is 80 mm and length of each connecting rod is 180 mm. The pitch distances
between the cylinder centre lines are 80 mm, 80 mm, 120 mm, 80 mm and 80 mm
respectively. The reciprocating mass per cylinder is 1.2 kg and the engine speed is 2400
rpm. Determine the out-of-balance primary and secondary forces and couples on the
engine taking a plane midway between the cylinders 3 and 4 as the reference plane.

Solution:
Given :

r="2="2=40 mm, | = connecting rod length = 180 mm ,

m = reciprocat ing mass of each cylinder =1.2 kg , N =

60 60

2400 rpm
2nN 2nx2400
We have, w = =

=251.33rad/s
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Cent. Distance Couple/ ®
Radius (r) Force/o™ from Ref (mrl)
Plane Mass (m) kg m (mr) plane 2’ ke m?
kg m m
1 1.2 0.04 0.048 0.22 0.01056
2 1.2 0.04 0.048 0.14 0.00672
3 1.2 0.04 0.048 0.06 0.00288
4 1.2 0.04 0.048 -0.06 -0.00288
5 1.2 0.04 0.048 -0.14 -0.00672
6 1.2 0.04 0.048 -0.22 -0.01056
Graphical Method:
Step 1:

Draw the primary force and primary couple polygons taking some convenient scales.
Note: For drawing these polygons take primary cranks position as the reference

o 2N

b Force polygon

NO UNBALANCED
PRIMARY FORCE

b

-

Nz

i) Couple polygon

Note: No/primary unbalanced force or couple NO UNBALANCED
i) Primary cranks PRIMARY COUPLE
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Step 2:
Draw the secondary force and secondary couple polygons taking some convenient scales.
Note: For drawing these polygons take secondary cranks position as the reference

80 mm / 1 ‘ /Y
' 1200

2400 bl Force polygon

Reference Plane

80 mm L
3 \&
2
80 mm {
>
- -
6 6
Note: NO, econdary unwm? orgakele c) Co uple polygon
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Problem 3:

The stroke of each piston of a six-cylinder two-stroke inline engine is 320 mm and
the connecting rod is 800 mm long. The cylinder centre lines are spread at 500 mm.

The cranks are at 60 apart and the firing order is 145236. The reciprocating mass
per cylinder is 100 kg and the rotating parts are 50 kg per crank. Determine the out
of balance forces and couples about the mid plane if the engine rotates at 200 rpm.

Primary cranks position

Relative positions of Cranks in degrees
Firing 01 02 03 04 0s 06
order
142635 0 240 120 120 240 0
145236 0 180 240 60 120 300

Secondary cranks position

Relative positions of Cranks in degrees
Firing 01 02 03 04 0s 06
order
142635 0 120 240 240 120 0
145236 0 0 120 120 240 240

Calculation of primary forces and couples:

Total mass at the crank pin = 100 kg + 50 kg = 150 kg

Cent. Distance | Couple/ ®°
Mass (m) Radius (r) Force/o" from Ref (mrl)
Plane Kk p
g m (mr) plane kg m
kg m m
1 150 0.16 24 1.25 30
2 150 0.16 24 0.75 18
3 150 0.16 24 0.25 6
4 150 0.16 24 -0.25 -6
5 150 0.16 24 -0.75 -18
6 150 0.16 24 -1.25 -30
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/
500 180°
2

500

(b) Force polygon

(c) Couple polygon

(d) Couple polygon
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Calculation of secondary forces and couples:

Since rotating mass does not affect the secondary forces as they are only due to
second harmonics of the piston acceleration, the total mass at the crank is taken as

100 kg.
Cent. Distance Couple/ o
Mass (m) Radius (r) Force/®” from Ref (mrl)
Plane Z
kg m (mr) plane kg m
kg m m
1 100 0.16 16 1.25 20
2 100 0.16 16 0.75 12
3 100 0.16 16 0.25 4
4 100 0.16 16 -0.25 -4
5 100 0.16 16 -0.75 -12
6 100 0.16 16 -1.25 -20
/ 1
2
120°
3
> >
____________ Reference plane 1 2
120° 4 (f) Force polygon
2400
5
mrl
( Unbalanced) _.--~
240° 6 )

(e) Secondary cranks

(g) Couple polygon
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BALANCING OF V — ENGINE

Two Cylinder V-engine:

Two cylinder V-engine

A common crank OA is operated by two connecting rods. The centre lines of the two
— cylinders are inclined at an angle o to the X-axis.

Let O be the angle moved by the crank from the X-axis.

Determination of Primary force:

Primary force of 1 along line of stroke OB1 = mr o’ cos(0-a) — — —— — — (1)
Primary force of 1 along X - axis =mr o: cos( 0—a ) cos oo — — — (2)
Primary force of 2 along line of stroke OB2 = mr o’ cos( 0+a) — — — — — 3)
Primary force of 2 along X-axis =mr o: cos( O+a)cosa — — — (4)

Total primary force al ong X - axi s
I mrw.cosafcos(6-a)+cos(6+a)]
0 mr w:> cos a[cos 8 cos a +sin 8 sin a + cos B cos a -sin 8 sin a]
I mrw. cosax2cosBcosa
l2mrw:. cos: acos@ ———————————— (5)
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Similarly,

Total primary force along Z - axis
+mr w: [cos( ® - a ) sina-cos( B +a )sinal
+mr w: sin a [(cos 6 cos a +sin 6 sin a) —( cos 6 cos a -sin 6 sin a]
+mr w2 sin a x 2 sin 6 sin a
+2mMr: sin. asinf -——————————— (6)

Resultant P ri ma r y force

] \(2fmrw:cos-acosB )2+ (2mrw:sin:asin @)

] 2mrw21(dos.acos 8 ) +(sinzasin®)? ————- (7)

and this resultant primary force will be at angle B with the X — axis, given by,

tanp = Sin °a sin 6 (8)
cos :a cos 6

If 20, = 90°, the resultant force will be equal to

2mrwa1(cgs2450 cosB )’ +(sin2450 sin @ )>

and sin 2 45, sin 6
tanB= cos:45.cos B8 =tan B - ————- (10)

i.e., B = 0 or it acts along the crank and therefore, can be completely balanced by a mass
at a suitable radius diametrically opposite to the crank, such that,

For a given value of a, the resultant force is maximum (Primary force), when

(cos 2a cos 8)? + (sin 2 asin 8)? is ma x i mum
or

(cos4ac0526+sin4c|sinze) is ma ximum
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Or

d

a0 (cos:acos2.8+sinzasin.6)=0i.e., -cosaax

2cosBsinB+sinsax2sinBcosB=0

i.e., -cossaxsin2B+sinsaxsin206=
Oi.e. sin206 [sinsa-cossa]=0

As QL is not zero, therefore for a given value of o, the resultant primary force is

maximum when 6 =0 o .

Determination of Secondary force:

Secondary force of 1 along line of stroke OB1 is equal to

mr
€08 2(0-0) ————— — (1)
n
mr :
Secondary force of 1 along X - axis = cos 2( 0—a) cos o ———(2)
n

Secondary force of 2 along line of stroke OB2 =

mr o
,€08 2( 0+a) — — — — — 3)
n
mr m:
Primary force of 2 along X-axis = cos 2( 0+a)cosa — — — (4)
n
Therefore,
Total secondary force al ong X - axi
S
mrw
= cosafcos2(B6-a)+cos2(6+a)]
mnrco2 _ . : ;
= cosa[(cos2B8cos2a+sin2Bsin2a)+(cos2Bcos2a-sin28sin
2aln
2mrw
=— __cosacos26cos2a-—\—————————— (5)
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+

Similarly,

i’otalrs(%condary force along Z - axis

2sinasin2@sin2a--—-—-—————- (6) n
Resultant Secondary force
:m\/(cosacosZ6c0520)2+(sinasin265in20)2 ————— (7)
And . sinasin206sin2a
tan =cosacos26cos2a ——— (8)

If 2a=900 or a=45, ,

2mr o2

mr o
Secondary force = sin2 0 ——--—(9)
n n
Andtan B+ =0 and B =900 —————- (10) i.e., the force acts along Z-

axis and is a harmonic force and special methods are needed to balance it.

Problem 1:

The cylinders of a twin V-engine are set at 600 angle with both pistons connected to a
single crank through their respective connecting rods. Each connecting rod is 600 mm
long and the crank radius is 120 mm. The total rotating mass is equivalent to 2 kg at the
crank radius and the reciprocating mass is 1.2 kg per piston. A balance mass is also fitted
opposite to the crank equivalent to 2.2 kg at a radius of 150 mm. Determine the maximum
and minimum values of the primary and secondary forces due to inertia of the
reciprocating and the rotating masses if the engine speed is 800 mm.

Solution:

Given :
m = reciprocating mass of each piston =1.2 kg M =

equivalent rotating mass = 2 kg
m ¢ =balancing mass = 2.2 kg, rc = 150 mm | =
connecting rod length = 600 mm

= crank radius =120 mm N = 800
rpm
2nN 2nx800 I 600
W e have, w = = =83.78rad/s andn=—"=—__=5
60 60 r 120
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Two cylinder V-engine %\

Total primary force along X - axis =2 m r w 2 cos - a cos 6 (1) Centrifuga | force due to
rotating mass along X — axis

=Mrw: cos -——————————— (2)

Primary Force:

Centrifuga | force due to balancing mass along X — axis
=—Mclrcw:2 €SO0 ———————————— (3)

Therefore total unbalance force along X —axis = (1) + (2) + (3)

That is
Total Unbalance force along X axis

= 2Mmrmw: cos: acos®+Mrw. cos 0 —-—m cr
cw:2 cos B

-  w:cosB[2mrcos.a+Mr-mecrc|
= (83.78). cos B [2x1.2x0.12xc052 300 +2x0.12

~2.2x0.15]
- (83.78). cos 8[0.216 + 0.24 - 0.33]- 884.41
CoOSsON------- (4)

Total primary force along Z-axis =2 m
row. sin. asin-——————————— (5)
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Centrifuga | force  due to rotating mass along Z - axis
=Mrw: sin@ -———————————— (6)

Centrifuga | force  due to balancing mass along Z - axis
=-—m.r.w: Sin@ -———————————— (7)

Therefore total unbalance force along Z —axis = (5) + (6) + (7)
That is

Total Unbalance force along Z - axis
0l 2mrw: sinn asin®@+Mrw: sinB® —-m ¢r cw: sin 8

I w: sin6[2mrsinza+Mr—mcrc]
0(83.78): sin 8 [2x1.2x0.12xsin: 30 v +2x0.12 —2.2x0.15]
0 (83.78). sin 6[0.072 + 0.24 - 0.33]=-126.34sin N - - - - - - - (8)

Resultant Pri ma ry force
+ Y(884.41 cos 6 )% + (- 126.34 sin 6 )?
+4782181.05 cos 2 6 +15961.8 sin 2 6
+v766219.25 cos > B +15961.8 —— — — — (9)

This is maximum, when © =0° and minimum, when 6 =90,

Maximum Primary force, i.e., when 8 =0 0

- [766219.25 +15961.8  =884.41 N————-— (10)

And Minimum Primary force, i.e., when 8 =90 o

= '\/766219.25 cos 2900 +15961.8 =126.34 N-—-——-—— (11)

Secondary force:

The rotating masses do not affect the secondary forces as they are only due to second
harmonics of the piston acceleration.
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Resultant Secondary force

2mro: mrr1w 2 J(cos a cos 2 8 cos 2 a). +(sin a sin 2 8 sin 2 a).

2 x1.2 x0.12x(83.78) - (cos 30 cos 26 cos60.)°
5 +(sin300 sin285sin60o)?

0 404.3 J0.1875 ( cos 266. +0.1875 ( sin260; |----- (12)

This is maximum, when © =0° and minimum, when 6 =180°

Maximum  secondary force, i.e., when 8 =0,

-404.3 |J[0.1875 (cos 00 ) +0.1875 (sin 0o ). |-=175.07 N ————— (13)

And Minimum secondary force, i.e., when 6 =180 o

+404.3 1 [0.1875 ( cos180 ). +0.1875 (sin18 0. ). |=175.07
N---f-(14)

BALANCING OF W, V-8 AND V-12 - ENGINES

BALANCING OF W ENGINE

In this engine three connecting rods are operated by a common crank.

Total primary force along X - axis

=mrw. cosB(2cos: A+l )-——————————— (1)

Total primary force along Z - axis will be same a s in the V - twin engine,
(since the primary force of 3 along Z — axis is zero)

=2mrw: sin: a sin®-——————————— (2)

Resultant P r i mar y force

—mr:h [cose(2c0520+1)2 +(25inzc|sine)2] ————— (3)

and this resultant primary force will be at angle 3 with the X — axis, given by,
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2sin. asin O

tan B = cos B(2cos.a+1) (4)

If oo =60,

Resultant Primary force

and
=2Mmrwz: - —---- (5)
2

tanf==tan® - ————- (6)
ie, =06 or it acts along the crank and therefore, can be completely balanced by a
mass at a suitable radius diametrically opposite to the crank, such that,
mr rr =mr----- (7 )

Total secondary force al ong X - axi s

2mr w

= cos 20 cosacos2ad+l ——————————— (8)

n

Total secondary force along Z —direction will be same as in the V-twin engine.

Resultant secondary force

2sinasin20sin2a

tan B =cos 2 6(2cos acos 2 a+1) ————— (10)

If =060,
Secondary force al ong X - axi s

Mrw:cs 20
T (11)

Secondary force al ong Z - axi s

3mrw,

\
It is not possible to balance these forces simultaneously
V-8 ENGINE

It consists of two banks of four cylinders each. The two banks are inclined to each other
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in the shape of V. The analysis will depend on the arrangement of cylinders in each bank.

V-12 ENGINE

It consists of two banks of six cylinders each. The two banks are inclined to each other in
the shape of V. The analysis will depend on the arrangement of cylinders in each bank.

If the cranks of the six cylinders on one bank are arranged like the completely balanced
six cylinder, four stroke engine then, there is no unbalanced force or couple and thus the
engine is completely balanced.

BALANCING OF RADIAL ENGINES:

It is a multicylinder engine in which all the connecting rods are connected to a common
crank.

@ 20« C(m/2)

mra?cos 6 (mrw?/n) cos @

&)

Y
i

A (m/2)
20« C’'(m/2)
OA—Primary direct crank OC—Secondary direct crank
OA—Primary reverse crank OC’—Secondary reverse crank
(b) (c)
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Direct and reverse crank method of analysis:

In this all the forces exists in the same plane and hence no couple exist.

In a reciprocating engine the primary force is given by, mr ®” c0s0 which acts along
the line of stroke.

In direct and reverse crank method of analysis, a force identical to this force is generated
by two masses as follows.

1.A mass m/2, placed at the crank pin A and rotating at an angular velocity o in the
counter clockwise direction.

2.A mass m/2, placed at the crank pin of an imaginary crank OA’ at the same angular
position as the real crank but in the opposite direction of the line of stroke. It is assumed
to rotate at an angular velocity o in the clockwise direction (opposite).

3. While rotating, the two masses coincide only on the cylinder centre line.

The components of the centrifugal forces due to rotating masses along the line of stroke
are,

m
Due to mass at A = r ®: cos O
2
m
Due to mass at A = r ®: cosO
2

Thus, total force along the line of stroke = mr ®” c0s0 which is equal to the primary
force.

At any instant, the components of the centrifugal forces of these masses normal to the
line of stroke will be equal and opposite.

The crank rotating in the direction of engine rotation is known as the direct crank and
the imaginary crank rotating in the opposite direction is known as the reverse crank.

Now,

Secondary accelerating force is

mr : c0s 2 0 — mr(2cm)—cos 26
n 4n
r
vw mr (2m): cos
20 4n
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This force can also be generated by two masses in a similar way as follows.

1. A mass m/2, placed at the end of direct secondary crank of length 4L at an angle 20
n

and rotating at an angular velocity 2 in the counter clockwise direction.

r
= A mass m/2, placed at the end of reverse secondary crank of length ~ _  atan angle -20
4n

and rotating at an angular velocity 2 in the clockwise direction.
The components of the centrifugal forces due to rotating masses along the line of stroke
are,

DuetomassatC=M_T (2 w ). cos26 =Mrw 2 c0s28
2 4n 2n

DuetomassatC'= M_I (2 w ). cos 26 =Mr® > cos 26
2 4n 2n

Thus, total force along the line of stroke =

2
cos 26 which is equal to the secondary force.

m r mrw
2x ———(2 w )2 cos 26 =
2 4n
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Introduction.

Terms Used in Vibratory
Motion.

Types of Vibratory Motion.
Types of Free Vibrations.
Natural Frequency of Free
Longitudinal Vibrations.
Natural Frequency of Free
Transverse Vibrations.

Effect of Inertia of the
Constraint in Longitudinal and
Transverse Vibrations.
Natural Frequency of Free
Transverse Vibrations.
Natural Frequency of Free
Transverse Vibrations.
Natural Frequency of Free
Transverse Vibrations.
Natural Frequency of Free
Transverse Vibrations.
Critical or Whirling Speed of
a Shaft.

Frequency of Free Damped
Vibrations(Viscous Damping).
Damping Factor or Damping
Ratio.

Logarithmic Decrement.
Frequency of Under Damped
Forced Vibrations.
Magnification Factor or
Dynamic Magnifier.
Vibration Isolation and
Transmissibility.

Longitudinal

and
Transverse
Vibrations

Introduction

When elastic bodies such as a spring, a beam and a
shaft are displaced from the equilibrium position by the ap-
plication of external forces, and then released, they execute a
vibratory motion. This is due to the reason that, when a body
is displaced, the internal forces in the form of elastic or strain
energy are present in the body. At release, these forces bring
the body to its original position. When the body reaches the
equilibrium position, the whole of the elastic or strain energy
is converted into kinetic energy due to which the body
continues to move in the opposite direction. The whole of the
kinetic energy is again converted into strain energy due to
which the body again returns to the equilib- rium position. In
this way, the vibratory motion is repeated indefinitely.

Terms Used in Vibratory Motion

The following terms are commonly used in connec-
tion with the vibratory motions :

909
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910 - Theory of Machines

1. Period of vibration or time period. It is the time interval after which the motion is
repeated itself. The period of vibration is usually expressed in seconds.

2. Cycle. 1t is the motion completed during one time period.

3. Frequency. It is the number of cycles described in one second. In S.I. units, the fre-
quency is expressed in hertz (briefly written as Hz) which is equal to one cycle per second.

Types of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :

1. Free or natural vibrations. When no external force acts on the body, after giving it an
initial displacement, then the body is said to be under firee or natural vibrations. The frequency of
the free vibrations is called firee or natural frequency.

2. Forced vibrations. When the body vibrates under the influence of external force, then
the body is said to be under forced vibrations. The external force applied to the body is a periodic
disturbing force created by unbalance. The vibrations have the same frequency as the applied force.
Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes
place.

3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration,
the motion is said to be damped vibration. This is due to the fact that a certain amount of energy
possessed by the vibrating system is always dissipated in overcoming frictional resistances to the
motion.

Types of Free Vibrations

The following three types of free vibrations are important from the subject point of view :
1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations.

Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end
carrying a heavy disc, as shown in Fig. 23.1. This system may execute one of the three above
mentioned types of vibrations.

Shaft

B A/v
' @}

C
B = Mean position ; 4 and C = Extreme positions.
(a) Longitudinal vibrations. (b) Transverse vibrations. (¢) Torsional vibrations.
Fig. 23.1. Types of free vibrations.

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the
axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.
In this case, the shaft is elongated and shortened alternately and thus the tensile and compressive
stresses are induced alternately in the shatft.
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2. Transverse vibrations. When the particles of the shaft or disc move approximately
perpendicular to the axis of the shaft, as shown in Fig. 23.1 (), then the vibrations are known as
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are
induced in the shaft.

3 Ea,

Bridges should be built téking vibrations into account.

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the

axis of the shaft, as shown in Fig. 23.1 (c¢), then the vibrations are known as torsional vibrations.
In this case, the shaft is twisted and untwisted alternately and the torsional shear stresses are in-
duced in the shaft.
Note : If the limit of proportionality (i.e. stress proportional to strain) is not exceeded in the three types of
vibrations, then the restoring force in longitudinal and transverse vibrations or the restoring couple in torsional
vibrations which is exerted on the disc by the shaft (due to the stiffness of the shaft) is directly proportional
to the displacement of the disc from its equilibrium or mean position. Hence it follows that the acceleration
towards the equilibrium position is directly proportional to the displacement from that position and the vibration
is, therefore, simple harmonic.

Natural Fre quency of Free Longitudinal
Vibrations

The natural frequency of the free longitudinal vibrations may be determined by the following
three methods :

1. Equilibrium Method
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in Fig.
23.2 (a).
Let s = Stiffness of the constraint. It is the force required to produce unit

displacement in the direction of vibration. It is usually expressed
in N/m.

m = Mass of the body suspended from the constraint in kg,
W = Weight of the body in newtons = m.g,

*  The torsional vibrations are separately discussed in chapter 24.
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§ = Static deflection of the spring in metres due to weight W
newtons, and
x = Displacement given to the body by the external force, in metres.

(a) (b) ©

=

Unstrained &

position IS 1--- ;"' o

Fig. 23.2. Natural frequency of free longitudinal vibrations.
In the equilibrium position, as shown in Fig. 23.2 (), the gravitational pull W =m.g, is
balanced by a force of spring, such that W=5.§ .

Since the mass is now displaced from its equilibrium position by a distance x, as shown in Fig.
23.2 (¢), and is then released, therefore after time ¢,

Restoring force =W-5s0+x)=W-5.0-s5.x
=5.0—5.0—85.X=—5X (v W=5.0) ()
... (Taking upward force as negative)
and Accelerating force = Mass x Acceleration
d*x
=m Xd_z ... (Taking downward force as positive) . . . (if)
t
Equating equations (7) and (i), the equation of motion of the body of mass m after time 7 is
d’x dx
mx- ) =—sx o mX 2+-s_-x0
) -t -t
d°x s .
+7x=0 R (1))
_ — X
¢ m
We know that the fundamental equation of simple harmonic motion is
2
d
—zx“‘)zxzo )
dt

Comparing equations (iii) and (iv), we have

S
0= |—
m
== =21
(] S

. . t m
Time period, p
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and natural frequency, fa =L:L\/E :L\/g .o (vmg=5s.9)
t, 2n\m 2m\3d

p

Taking the value of g as 9.81 m/s” and § in metres,

1 [9.81 0.4985

= Hz
271 d S

Tn

Note : The value of static deflection § may be found out from the given conditions of the problem. For
longitudinal vibrations, it may be obtained by the relation,

w1
Stres =K w.l
fe. S_g or o or 5=
Strain Ad EA
where O = Static deflection i.e. extension or compression of the constraint,

W = Load attached to the free end of constraint,
[/ = Length of the constraint,
E = Young’s modulus for the constraint, and

A = Cross-sectional area of the constraint.

2. Energy method

We know that the kinetic
energy is due to the motion of the
body and the potential energy is
with respect to a certain datum
position which is equal to the
amount of work required to move
the body from the datum position.
In the case of vibrations, the
datum position is the mean or
equilibrium position at which the
potential energy of the body or the
system is zero.

In the free vibrations, no
energy is transferred to the system This industrial compressor uses compressed air to power heavy-
or from the system. Therefore the duty construction tools. Compressors are used for jobs, such
summation of kinetic energy and as breaking up concrete or paving, drilling, pile driving, sand-
potential energy must be a Plasting and tunnelling. A compressor works on the same prin-
ciple as a pump. A piston moves backwards and forwards in-
side a hollow cylinder, which compresses the air and forces it
into a hollow chamber. A pipe or hose connected to the cham-
ber channels the compressed air to the tools.

constant quantity which is same at
all the times. In other words,

d
—(K.E.+PE)=0 Note : This picture is given as additional information and
dt is not a direct example of the current chapter.
We know that kinetic en-
ergYa
2
1 (dx)
KE = _xm|—
s kl dt )|
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(0+sx) 1
and potential energy, PE. = x= 2

dt 2 dt +2xsx =0
LA [
><><2><dx><d x+1 x 2 xdxz()
— m — x —
2 dt  dt 2 t
d“x s
2 _
mxd"%1 —0 +ox=0
or 5 SX or — — X ... (Same as before)
dt dt= m
The time period and the natural frequency may be obtained as discussed in the previous
method.

3. Rayleigh’s method

In this method, the maximum kinetic energy at the mean position is equal to the maximum

potential energy (or strain energy) at the extreme position. Assuming the motion executed by the
vibration to be simple harmonic, then

x=Xsin o.t @)
where x = Displacement of the body from the mean position after time ¢
seconds, and
X = Maximum displacement from mean position to extreme position.
Now, differentiating equation (), we have
— =X X cos ®.t
dt
Since at the mean position, # = 0, therefore maximum velocity at the mean position,
dx
v=_=0X
dt
. Maximum kinetic energy at mean position
1 1
=_ X m.v2: _x m.co2 .X2 .. (i)
2 2
and maximum potential energy at the extreme position
:(0+s.X\|X:lXSX2 (1))
L2 )2

Equating equations (i) and (iii),

1 1
~xmo? X2 :_XSXZ o o= and o= |-
2 2 ’ m

_ Z—TC =2 N
Time period, ,t,_ =en P ... (Same as before)
®
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1 ®
and natural frequency, fp=——== L S ... (Same as before)
lp 2n 2m \m

Note : In all the above expressions, mis known as natural circular frequency and is generally denoted by
®

n

Natural Frequency of Free Transverse

Vibrations
Consider a shaft of negligible mass, whose one 7
end is fixed and the other end carries a body of weight o Ty w4 -5 -
W, as shown in Fig. 23.3. - Mean position ~ ____ _ I_ﬁ
Let s = Stiffness of shaft, JSX
X
& = Static deflection due to - i
weight of the body, Posfonater —=7--5-=
x = Displacement of body from - I -
mean position after time 7. o x
m—=—=
m = Mass of body = W/g

Fig. 23.3. Natural frequency O(Ef;ree

As discussed in the previous article, transverse vibrations

Restoring force =—s.x ()]
. d’x
and accelerating force =mx—s R (7))
dt
Equating equations gi) and (i#7), the equation of motion becomes
d“x n
m X =—sX m X +.= 0
- or > sx
d’x s
+ x=0 ... (Same as before )
B R
dt- m

Hence, the time period and the natural frequency of the transverse vibrations are same as that
of longitudinal vibrations. Therefore

Time period, tp=2n \/Z

s
1

and natural frequency, I =_=L \/Ezi \/g
tp 2n\m 2m\3

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection
curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,
that the static deflection of a cantilever beam loaded at the free end is

Wk
8= a1 (in metres)

where W = Load at the free end, in newtons,
[ = Length of the shaft or beam in metres,
E = Young’s modulus for the material of the shaft or beam in
N/m?, and

1= Moment of inertia of the shaft or beam in m*.
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Example 23.1. 4 cantilever shaft 50 mm diameter and 300 mm long has a disc of mass
100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m’. Determine the
frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given : d =50 mm =0.05 m; /=300 mm = 0.03 m ; m =100 kg ;
E =200 GN/m’ = 200 x10” N/m”

We know that cross-sectional area of the shaft,

A="xa? 20,052 =1.96x10 > m?
4 4
and moment of inertia of the shaft,

1="xd*="(0.05*=03 x10°m*
64 64

Frequency of longitudinal vibration
We know that static deflection of the shaft,

s WL _ 100x9.81x03

— . 5~ =0.751x10""m
AE 1.96x1077 x200x10
W W=m.g)

~.Frequency of longitudinal vibration,

0.4985 0.4985

In = = =575 Hz Ans.
B Jogsixio™
Frequency of transverse vibration

We know that static deflection of the shaft,

w.P 3

5 = 100x981x(03) Lo 08

3EL  3x200x10° x0.3x10°

Frequency of transverse vibration,

04985 0.4985

n= =———— — 41 Hz Ans.
Vs Jo147 <1073

Effect of Inertia of the
Constraint i
Longitudinal
Transverse Vi

In deriving the expressions for natural frequency of longitudinal
and transverse vibrations, we have neglected the inertia of the constraint
i.e. shaft. We shall now discuss the effect of the inertia of the constraint,
as below :

1. Longitudinal vibration

Consider the constraint whose one end is fixed and other end is v
free as shown in Fig. 23.4.

Let m, = Mass of the constraint per unit length,
[ = Length of the constraint, me.= Total mass of the



constraint = m,. [, and Fig. 23.4. Effect of inertia
v = Longitudinal velocity of the free end. of the constraint in
longitudinal vibrations.
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Consider a small element of the constraint at a distance x from the fixed end and of length &x

. Velocity of the small element

X
=_XV

/
and kinetic energy possessed by the element

1
= X Mass (velocity)®
2

1 (x \2 m P X
=_><m1.6x|_><v|: 1
2 ) 212

Total kinetic energy possessed by the constraint,

X Ox

Im "X m.v2|—x3—|l
:j 1 de— 1 |_
0o 27 2P |3,

TR A | 2 L (md), 1(me),
— 2 = . = R— = —| — R
AHTE M=o 3|)V 2(3|JV @

... (Substituting m, . 1= m)

m
If a mass of 3_C is placed at the free end and the constraint is assumed to be of negligible

mass, then
Total kinetic energy possessed by the constraint

_ I_(m_C\ v2 ... [Same as equation (7)] . . . (ii)
2103 )
Hence the two systems are dynamically same. Therefore, inertia of the constraint may be
allowed for by adding one-third of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m and the mass of
the disc m at the end is given, then natural frequency of vibration,

2. Transverse vibration v
Consider a constraint whose one end is fixed and the other end N
is free as shown in Fig. 23.5. J

. . N |Z m)
Let m, = Mass of constraint per unit length, 3

. Je x> l«dx
[ = Length of the constraint, N |
'17 —_—
m¢= Total mass of the constraint = m,./, and v

v = Transverse velocity of the free end. Fig. 23.5. Effect of inertia

Consider a small element of the constraint at a distance x of the constraint in
from the fixed end and of length §x . The velocity of this elementis transverse vibrations.
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[ 32— J |

given by | 37 x VI
2 |

Kinetic energy of the element
2
1 (312 )
= Xxmp.ox | —2p—xv
2 J

and total kinetic energy of the constraint,

:j}ZXml(y.xZ—f x v\ﬁ dx :—H%I—I%szf(wz.x“ —61.x° +3%)dx
o\ ) 0
i m 219 2. _6,_x6+£T"
8/6 L 5 6 7 M)
we? o7 e A1 (33l

P P LR B
2 2 2
= xmplv = xmp.l = X m
1 :L'JA& 14| |mc1’ ()}
\ J \ J
... (Substituting m,.l =m)
If a mass of % is placed at the free end and the constraint is assumed to be of negli-
gible mass, then
Total kinetic energy possessed by the constraint
= lg(ﬁino(_:h e ... [Same as equation ()]
\ J
Hence the two systems are dynamically same. Therefore the inertia of the constraint may
33
be allowed for by adding 1 40—0-f its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m and the mass of
the disc m at the free end is given, then natural frequency of vibration,

1 K
21 m+33mc
140

Notes : 1. If both the ends of the constraint are fixed, and the disc is situated in the middle of it, then
proceeding in the similar way as discussed above, we may prove that the inertia of the constraint may be
1

Jn=

allowed for by adding gof its mass to the disc.

17
2. If the constraint is like a simply supported beam, then 35 of its mass may be added to the mass

of the disc.
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Natural Fre quency of
Free Transverse
Vibrations Due to a Point
Load Acting Over a Sim
ply Supported Shaft

Consider a shaft 4B of length /, carrying a point load w
W at C which is at a distance of /| from 4 and /, from B, as |‘— h —’l‘c— by ——
shown in Fig. 23.6. A little consideration will show that Ak £
when the shaft is deflected and suddenly released, it will ’ g g
make transverse vibrations. The deflection of the shaft is | ™. v
proportional to the load W and if the beam is deflected | 77
beyond the static equilibrium position then the load will !
vibrate with simple harmonic motion (as by a helical spring). Fig. 23.6. Simply supported beam
If § is the static deflection due to load W, then the natural with a point load.
frequency of the free transverse vibration is
1 g 0.4985
Jn=—4==—F Hz ... (Substituting, g = 9.81 m/s?%)
2n \ & S

Some of the values of the static deflection for the various types of beams and under various load
conditions are given in the following table.
Table 23.1. Values of static deflection (8) for the various types of beams and under
various load conditions.

S.No. Type of beam Deflection (5)
‘ . , wr
1. Cantilever beam with a point load W at the o= ﬁ(at the free end)
free end.
w
7 I
. . . wi4
2. Cantilever beam with a uniformly o= a(at the free end)
distributed load of w per unit length.
s w/ unit length
Y Y Y Y Y Y Y Y Y YN
< | >
2;2
3. Simply supported beam with an eccentric 3= 3Bl (at the point load)
point load W.
f
le—a —’L— b——
< / >
3
4. Simply supported beam with a central point = (at the centre)
48 EI
load . W
vl
]
«—_1/2 _k+_."-'2 —»
< / »
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S.No. Type of beam Deflection (5)
5wt
5. Simply supported beam with a uniformly o= X —— (at the centre)
L . 384 EI
distributed load of w per unit length.
w/unit length
4
am'aa'aa'a'a'a'a'a'a
< | >
3,3
6. Fixed beam with an eccentric point load 7. o= (at the point load)
w 3E11
:4— a—ple——b—»
I I |
) 1
. : . wi
7. Fixed beam with a central point load . 8= W(at the centre)
w w
Z v Y
4
e 12 2 —»‘
< / »
. . . s wi#
8. Fixed beam with a uniformly distributed 8= ——(at the centre)
. - 384E1
load of w per unit length.
/ unit length
[W
Y Y Y Y Y Y Y Y YV Y
/

Example 23.2. 4 shaft of length 0.75 m, supported freely at the ends, is carrying a body of
mass 90 kg at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume
E = 200 GN/m’ and shaft diameter = 50 mm.

Solution. Given: /=0.75m; m =90 kg ; a = AC = 0.25 m ; E = 200 GN/m* = 200 x 10’
N/m?; d =50 mm = 0.05 m

The shaft is shown in Fig. 23.7. 90kg
We know that moment of inertia of the shaft, l
C
A B
1="xa*="0.05*m*
64 64 0.25m-»«—0.5m —
7O
=0.307 x10 " m* .
and static deflection at the load point (i.e. at point C), Fig. 23.7
2,2 2 2
s Wb 90x981(0257 (0.5) —oixi0=3m

3EIT 3%200x10° x0.307x107° x 0.75
... (b=BC=0.5m)
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We know that natural frequency of transverse vibration,

04985  0.4985
= = = 49.85 Hz Ans.
Vo Joaxio

Example 23.3. 4 flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both
ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the
natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/m".

Solution. Given : d =50 mm = 0.05 m ; m = 500 kg ; £ =200 GN/m” = 200 x 10° N/m*> We

know that cross-sectional area of shaft, LN
_T 2T 2_ 32
A=_xd = _(0.05=196x10" m ’ 0.8m
4 4
and moment of inertia of shaft,
1="xd*="(0.05)"= 0.307 x10° m* A
64 64 I, 0.6m
Natural frequency of longitudinal vibration l l
Let m; = Mass of flywheel carried by the length /,. Fig. 23.8
L m —m,; = Mass of flywheel carried by length /,. We
know that extension of length 7,
_ Wl.llzml.g.ll .
AE  AE - @

Similarly, compression of length /,
_ w-w) 12: (m—my) gl
AE AE RN (7))

Since extension of length /; must be equal to compression of length /,, therefore equating
equations (7) and (i7),

myly=(m—my) b

m;x0.9 =(500-m;)0.6=300—-0.6m;0r m;=200kg
Extension of length /;,

5 m1~g~11: 200 x 9.81x 0.9 45410 m
AE  1.96x107 x200x10’
We know that natural frequency of longitudinal vibration,
0.4985 0.4985
f= = =235Hz Ans.

b Jasx10®

Natural frequency of transverse vibration

We know that the static deflection for a shaft fixed at both ends and carrying a point load is
given by

wa'h' 500x9.81(0.9)°(0.6)°

5= —124x10 "M

3EIP 3x200x10° x0.307x107°(1.5)°
... (Substituting W=m.g ;a=1,,and b= 1,)
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We know that natural frequency of transverse vibration,

04985 0.4985

35 J12ax10°

=14.24 Hz Ans.

Natural Frequency of

Free Transverse

Vibrations Due to

Uniformly Distribute d

Load Acting Over a Sim

ply Supported Shaft
Consider a shaft 4B carrying a uniformly distributed load of w per unit length as shown in Fig.

23.9.

Let », = Static deflection at the middle of the shaft,
a,;= Amplitude of vibration at the middle of the shaft, and
= Uniformly distributed load per unit static deflection at the middle
of the shaft = w/y,.

|4_ X —>| «— G w/ unit length

B

T Mean posmon - =7

k“'/ =

Extreme
positions

Static deflection curve T

!
I
Fig. 23.9. Simply supported shaft carrying a uniformly distributed load.

Now, consider a small section of the shaft at a distance x from 4 and length gy .
Let y = Static deflection at a distance x from 4, and
a = Amplitude of its vibration.
Work done on this small section

1 1 w 1 a
= Xxw.a.dxxa= X xq.Sxxa: XWX xaxdx

ERRLE Ty,

Since the maximum potential energy at the extreme position is equal to the amount of work
done to move the beam from the mean position to one of its extreme positions, therefore
Maximum potential energy at the extreme position

L
1 a
=I_><w><_1><a.dx ()
02 N
Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection curve
of a beam, therefore

a
_%41_9 = Constant, C or '=C anda=y.C
oy M
Substituting these values in equation (7), we have maximum potential energy at the extreme
position



=J-l><w><C><y.C.dx=lxw.C2J.y.dx
2 2 .
0 0 ... (i)
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Since the maximum velocity at the mean position is w.a;, where © is the circular frequency of
vibration, therefore

Maximum kinetic energy at thelmean position
1 dx
:J-—xw—((o.a)zzﬂ X'’ szfyz.dx (1)
2 g 2g
0 0

.. .(Substituting a = y.C)
Weknow that the maximum potential energy at the extreme position is equal to the maximum
kinetic energy at the mean position, therefore equating equations (/) and (iii),

! I
“xwx Cf yudx =" 0" x C )Jz.dx
2 2g

0 0

/

gJydx
2_ b
o =7
J‘ y2.dx
0

When the shaft is a simply supported, then the static deflection at a distance x from 4 is

or

(V)

" w

y

4 3,1
= X' =2lx +Ix

24 EI ( ) -
where w = Uniformly distributed load unit length,

E = Young’s modulus for the material of the shaft, and
1= Moment of inertia of the shaft.

*

It has been proved in books on ‘Strength of Materials’ that maximum bending moment at a distance x
from 4 is

(B.M ) :Eldzy:wxz wl x
max dx2 2 2
Integrating this expression,
dy W wl . x*
El—= - +C
dx 2x3  2x2
On further integrating,
wit wi.x>

Ely= ——— — +Cix+C
Y 2><43><4 32><2><3 I 2
wx wix
=94 — 13 +C1¥£2
where C, and C, are the constants of integration and may be determined from the given conditions of
the probfem. Here
when

x=0,y=0; C,=0 3
wi
and when x=Ly=0; C =
Substituting the value of C,, we get

w
ot 203+ Py
24 EI
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A railway bridge.

Now integrating the above equation (v) within the limits from 0 to /,

! 5 3 5

jydxz W =20+ Px)de= if__le“_i_l_x—h
2457[ 2#EI5 4 2|

0 0 0

= wlE 2 L ow Pl wh

"24EI'5 4 2 24EL 5 120 ... (vi)
E.l
L]
/ / |' "|2
w4 3.5
Now !yzdxzi L24EI (x" =2l x +lx)J| dx

]

[ w Y
“aam) [P PR -4 2
0

I
2 [0 4P s 4nt 4y 250 ]

=_Y S + - +

576717 (19 7 3 8 5 6 |
0

_ow T2 a0 P el ar or ]

_%ELIE 97 +3 -8 -5 —6—J

oW X3119 )

576 212 630 ... (viD)

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency due
to uniformly distributed load,

| wP ST6EAIx630)
w= g X
\120E1 w? x 31/ J



Chapter 23 : Longitudinal and Transverse Vibrations = 9295

_PELL60, 2 [Es ... (viii)
\I wi* 155 \|wl4

.. Natural frequency due to uniformly distributed load,

[0} 2
f,=2=r |Elg - nHg :
noo Zn\lwl4 2\ ... (x)

We know that the static deflection of a simply supported shaft due to uniformly distributed load
of w per unit length, is

_swt o EL_ 5
ST 3B4EI wlt 384 5g
Equation (ix) may be written as

nf 5S¢ 0.5615 o )
Jn=— = Hz ... (Substituting, g = 9.81 m/s")
2 4 55 "SS

Natural Frequency of
Free Transverse
Vibrations of a Shaft Fixe
d at Both Ends Carrying
a Uniformly Distribute d

Load

Consider a shaft AB fixed at both ends and c ‘W” unit length
carrying a uniformly distributed load of w per unit Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
length as shown in Fig. 23.10. A N

We know that the static deflection at a I ! I
distance x from 4 is given by w wi

2 Fig. 23.10. Shaft fixed at both ends 2
*y— w (x4 TP opd ) 0 carrying a uniformly distributed load.
24 EI T

It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance x from 4 is
d? y wi2 wxr wix
M=FEl —= —— —— —
a2 12 2 2
Integrating this equation,

dy wi? weS wix?

El—=—x+ -———+(
dx 12 2x3 2x2
. . . dy
where C is the constant of integration. We know that when ~ x=0, ~ =0. ThereforeC =,
1 dx 1
2w 2
or ETdy W oy _wh
dx 12 6 4
Integrating the above equation,
2.2 4 3 2 2 4 3
wi”x wx wl  x wl“x”  wx wix
Ely= + - x_—+C= 4
12x2 6x4 4 3 24 24 12

where C, is the constant of integration. We know that when x = 0, y = 0. Therefore C,= 0.



or

or

w22 4 3
Ely=_(I"x"+x -2Ix
y=, ( )

w

C24E1

y o P2
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Integrating the above equation within limits from 0 to /,

e I e
J‘yxz451(x x) dx

rx A~ ow hp o 28]
=sapl st 45 4 =adwls Y3 Yl
L Jo L i

w ls_wl5

S 24El 30 T20El
Now integrating y* within the limits from 0 to /,

(w Y.
2 2.2
Iy de=|_____ |J.(x +1x* =20x") dx
’ \24 1) °
[ w
~\zam ) !(xs F 1" 44170 42020 — 412~ 2Px°) dx
[ w¥

- |\24 E[J I[(x8 I+ 650 + 41X —21°%°) dx

=| ( w\||—x +i +6[27 4lx8 213x6—|1
St s,

{w \ll—l9 W6l ar {ZJ.9|—| ( W|\ r
_ZA_EI 9 _5. 7 8 6__ 24El 39

)L 1 v )
We know that
gJ. ydx
= ' _gx wl® (24 EI)* x 630 _ 504 Elg
! 720 E1 W20 wi?
l y2 dx
4 El
o 504 Elg
v wt
and natural frequency,
_O_ 1 J504El EI
== £ 23573 -8
2n 2y wi wi
Since the static deflection of a shaft fixed at both ends and carrying a uniformly distributed
load is
s 4 El 1
S P
384E1 or
W 384 dg
f=3573 25— = 0571 1, . (Substituting, g = 9.81 m/s?)

Psas,  fos
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Natural Fre quen cy of
Free Transverse
Vibrations For a Shaft
Subjected to a Number
of Point Loads

Consider a shaft AB of negligible mass loaded with

point loads W, , W,, W5 and W, etc. in newtons, as shown in W, oW, W,  w,

Fig. 23.11. Let m,, m,, my and m, etc. be the corre- sponding l l l l

masses in kg. The natural frequency of such ashaft may be Al B
A ! S

found out by the following two methods : A
. VAR RN R
1. Energy (or Rayleigh’s) method
Lety,, y,, ¥3, 4 etc. be total deflection under loads
W, W,, Wyand W, etc. as shown in Fig. 23.11. We Fig. 23.11. Shaft carrying a

know that maximum potential energy number of point loads.

1 1 1 1
= xm.gy+ xm.gy+ m.gy+ xm.gy o
o1 Ly 22 53 3 5 d 4

1
=_Xmgy
2

and maximum kinetic energy

1 1
= xm(@y)+ xm (op)+
o 2 2

m (0y) +
D b 3 3

X
2
_1 2 2 2 2 2

_wa [ml(yl) +m2(y2) +m3(y3) +m4(y2 ... }

1
= _x oS my

2 ... (where o = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potential energy, we have

1 1
_x@'z m.y2 = Xmgy

2 2
olo2mgy _gEmy or o= jgxmy
Zm.y2 z m.y2 ) m.y2

.. Natural frequency of transverse vibration,

Q) 1 [gZm.y
ﬁl_2n 2n E}’ﬂy2

2. Dunkerley’s method

The natural frequency of transverse vibration for a shaft carrying a number of point loads and
uniformly distributed load is obtained from Dunkerley’s empirical formula. According to this



1 1 1 1 1
- = . + > + 5 +....+ 2
B (Y ) () (Jas) @
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where f,= Natural frequency of transverse vibration of the shaft
carrying point loads and uniformly distributed load.

Jui» funs Ju3»etc. = Natural frequency of transverse vibration of each point load.
Jns = Natural frequency of transverse vibration of the uniformly distributed

load (or due to the mass of the shaft).
Now, consider a shaft 4B loaded as shown in Fig. 23.12.

m
W Ws - wi unit length

A f’\f’\/"«'\f’\f’if\f’\"\"\f’i’\"\.f" -'e "i’v'\.’\'”v' g
A A
| ’ |

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.

Let 81,0,,03, etc. = Static deflection due to the load W, W,, W; etc. when considered
separately.
Og = Static deflection due to the uniformly distributed load or due to

the mass of the
shaft.
We know that natural frequency of transverse
vibration due to load W,

04985

Hz
ny V’Fa
Similarly, natural frequency of transverse vibra-
tion due to load W,
0.4985
[, = Hz

n
2 " 62
and, natural frequency of transverse vibration due to load
s,
0.4985
Sy =
7

Also natural frequency of transverse vibration due
to uniformly distributed load or weight of the shaft,

_ 05615

"o /0g Note : This picture is given as additional
information and is not a direct example of the
current chapter.

Hz

Therefore, according to Dunkerley’s empirical
formula, the natural frequency of the whole system,

1 N 1 . 1 . 1
Y ) ) () LT ()’
L S - S oy 0
3
(0.4985)"  (0.4985)*  (0.4985)* (0.5615)
_ ! r6+8+8+....+ 3s |
(040857 " 7 127 ]
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0.4985
or Jn = 5 Hz
3+848+Hunt -5
\/ DR 1.27
Notes : 1. When there is no uniformly distributed load or mass of the shaft is negligible, then dg =0 .

0.4985
fn=—F—r-———
\[51 + 02 +03+....

2. The value of 81, 8y , 83 etc. for a simply supported shaft may be obtained from the relation

Hz

5 Wa*b®
3EIN
where & = Static deflection due to load W,

a and b = Distances of the load from the ends,
E =Young’s modulus for the material of the shaft,
I =Moment of inertia of the shaft, and
[ = Total length of the shaft.
Example 23.4. 4 shaft 50 mm diameter and 3 metres long is simply supported at the ends
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support.
The Young's modulus for shaft material is 200 GN/m”. Find the frequency of transverse vibration.

Solution. Given : d =50 mm =0.05m; /=3 m, W;=1000 N ; W,= 1500 N ;
W, =750 N; E =200 GN/m” =200 x 10’ N/m’

The shaft carrying the loads is shown in Fig. 23.13
We know that moment of inertia of the shaft,

1="%xd*="(0.05"=0307 x10® m*
64 64

and the static deflection due to a point load W,

5= Wa*b?
3EIl
1000 N 1500N 750N
bo o e
Al 1 B
A
—1 m—>| T
< 2m >
< 25m P
< 3m >|
Fig. 23.13

Static deflection due to a load of 1000 N,

5 = 1000 1 * x2?
' 3%200x10° x 0.307 x10°° x3

=724x10 2 m

...(Herea=1m,and b=2 m)
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Similarly, static deflection due to a load of 1500 N,
1500 x 2° x1”

8, = =10.86x10
3%200x10° x0.307x107 x3

,3 m
...(Herea=2m,and b=1m)
and static deflection due to a load of 750 N,

750(2.5)* (0.5)*

= _ .
3% 200x10° x0.307x10 ° x3 2.12x10

..(Herea=2.5m, and b= 0.5 m)

d3

We know that frequency of transverse vibration,

. 04985 0.4985
Jn— -
81 +82+ 83 724 %107 +10.86 x1073 +2.12x107
0.4985
= = 3.5 Hz Ans.
0.1422

Critic al or Whirling Speed of a Shaft

In actual practice, a rotating shaft carries different mountings and accessories in the form of
gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the pulley or
gear does not coincide with the centre line of the bearings or with the axis of the shaft, when the shaft is
stationary. This means that the centre of gravity of the pulley or gear is at a certain distance from the
axis of rotation and due to this, the shaft is subjected to centrifugal force. This force will bent the shaft
which will further increase the distance of centre of gravity of the pulley or gear from the axis of
rotation. This correspondingly increases the value of centrifugal force, which further increases the
distance of centre of gravity from the axis of rotation. This effect is cumulative and ultimately the shaft
fails. The bending of shaft not only depends upon the value of eccentricity (distance between centre of
gravity of the pulley and the axis of rotation) but also depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflection of the shaft
from the axis of rotation becomes infinite, is known as critical or whirling

Rotor I Hotor
Y N

! P SVl ;

1 . | ~

! Shaft axis ”_/____r___:_ _______ %
7 4|0 Vi v 19 L
N, A [T

I a Shaft axis (.3 Axis of rotation
| |
e
speed.
(a) When shaft is stationary. (b) When shaft is rotating.

Fig. 23.14. Critical or whirling speed of a shaft.

Consider a shaft of negligible mass carrying a rotor, as shown in Fig.23.14 (). The point O is
on the shaft axis and G is the centre of gravity of the rotor. When the shaft is stationary, the centre line
of the bearing and the axis of the shaft coincides. Fig. 23.14 (b) shows the shaft when rotating about the
axis of rotation at a uniform speed of o rad/s.

Let m = Mass of the rotor,

e = Initial distance of centre of gravity of the rotor from the centre
line of the bearing or shaft axis, when the shaft is stationary,
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y = Additional deflection of centre of gravity of the rotor when the
shaft starts rotating at o rad/s, and

s = Stiffness of the shaft i.e. the load required per unit deflection of
the shaft.

Since the shaft is rotating at  rad/s, therefore centrifugal force acting radially outwards
through G causing the shaft to deflect is given by

Fczm.c)z(y+e)
The shaft behaves like a spring. Therefore the force resisting the deflection y,

=5y
For the equilibrium position,
2 _
mo- (y+e)=s.y
or mo’y+mole=sy O  y(s—mo’)=moe

m.ooz.e 0)2.8

y= = N (
S—mo>  s/m-o’ @

We know that circular frequency,
2

o’ e
O, = — or y= W ... [ From equation (i) ]
n

A little consideration will show that when > ®,, , the value of y will be negative and the shaft
deflects is the opposite direction as shown dotted in Fig 23.14 (b).
In order to have the value of y always positive, both plus and minus signs are taken.

2
y =+ (Q> ¢ 2 = Ex = Ex
(@) -0 Tol o]
n _n | —1 _c | —1
® ) ®)
... (Substituting m, = . )
We see from the above expression that when ®, = 0., the value of y becomes infinite.

Therefore o, is the critical or whirling speed.

Critical or whirling speed,

mc=mn=\/%=\/§ Hz ...(k_: o m_Sg]

If N, is the critical or whirling speed in r.p.s., then

1 .
2n N, = \/% or N, & _ 0.4983 r.p.s.

“2n\s 5
where S = Static deflection of the shaft in metres.

Hence the critical or whirling speed is the same as the natural frequency of
transverse vibration but its unit will be revolutions per second.
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Notes : 1. When the centre of gravity of the
rotor lies between the centre line of the shaft Induction
and the centre line of the bearing, e is taken
negative. On the other hand, if the centre of Intake _
gravity of the rotor does not lie between the Vvalve
centre line of the shaft and the centre line of

the bearing (as in the above article) the value

of e is taken positive.

Compression Exhaust

2. To determine the critical speed of a
shaft which may be subjected to point loads,
uniformly distributed load or combination of
both, find the frequency of transverse vibration
which is equal to critical speed of a shaft in
r.p.s. The Dunkerley’s method may be used for
calculating the frequency.

Fuel injection

3. A shaft supported is short bearings i
and combustion

(or ball bearings) is assumed to be a simply sup-

ported shaft while the shaft supported in long Diesel engines have several advantages over petrol
bearings (or journal bearings) is assumed to €ngines.They do not need an electrical ignition system;

have both ends fixed. they use cheaper fuel; and they do not need a
carburettor. Diesel engines also have a greater ability
Example 23.5. Calculate the to convert the stored energy in the fuel into mechanical
whirling speed of a shaft 20 mm diameter energy, or work.
and 0.6 m long carrying a mass of 1 kg at Note : This picture is given as additional information and is
its mid-point. The density of the shaft ma- not a direct example of the current chapter.

terial is 40 Mg/m’, and Young’s modulus is 200 GN/m’. Assume the shaft to be freely supported.

Solution. Given : d =20 mm=0.02m; /=0.6 m; m, = 1 kg ; p =40 Mg/m’
=40 x 10° g/m’ =40 x 10° kg/m’ ; £ =200 GN/m” = 200 x 10° N/m’

The shaft is shown in Fig. 23.15.

We know that moment of inertia of the shaft, Tka
’“\KWWYL'\’\{ e
1="xd*="(0.02)* m* A 5
64 64
=7.855% 10 m* o6m .
Since the density of shaft material is 40 x 10° kg/m’, Fig. 23.15

therefore mass of the shaft per metre length,

m = Areax lengthx density = (902 x1x40x10°s =126 keg/m

We know that static deflection due to 1 kg of mass at the centre,
wr 1x9.81(0.6)° &
=28x10 m

o= =
48El 48x200x10° x7.855x10™°
and static deflection due to mass of the shaft,

5wl 5x12.6x9.81(0.6)* ;4
=0.133x10 m

S = =
S 384 EI 384 x 200 x10° x 7.855x10°°
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Frequency of transverse vibration,

_ 04985 0.4985
n 6 3
1.27 1.27
08
11.52x10"
Let N_= Whirling speed of a shaft.

We know that whirling speed of a shaft in r.p.s. is equal to the frequency of transverse
vibration in Hz , therefore

N,=43.31.p.s. =43.3 x 60 =2598 r.p.m. Ans.

Example 23.6. 4 shaft 1.5 m long, supported in flexible bearings at the ends carries two
wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a
distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m’ and its modulus of
elasticity is 200 GN/m’. Find the lowest whirling speed of the shaft, taking into account the mass
of the shaft.

Solution. / = 1.5 m ; m; = m, = 50 kg ; 50kg 50 kg
dy =75mm = 03-075 m ; d, = 40 mm = 0.04 m ; _.‘ 0.375 mJO.B?Sm J~— wiunit length
p =7700kg/m” ; E =200 GN/m” = 200 x 10 c D s
N/m’ A B
The shaft is shown in Fig. 23.16. F— 0-75m _1;‘m
We know that moment of inertia of the shaft,

Fig. 23.16
I= n_rﬁdl)él — )t 1= 0075 - 0.04* 1= 1.4 %100 m?
64 I el ]
Since the density of shaft material is 7700 kg/m’, therefore mass of the shaft per metre

length,
mg= Area x length x density

= 1(0.075)2  (0.04)2 lex 7700 = 24.34 kg/m
4
We know that the static deflection due to a load W

_ Wa*b? _ m.ga*b?
~ 3Ell 3El
Static deflection due to a mass of 50 kg at C,
Cmga®h® 50 x 9.81(0.375)7 (1.125)°

3El 3x200x10% x1.4x107° x1.5

...(Herea=0.375m,and b= 1.125 m)
Similarly, static deflection due to a mass of 50 kg at D

mgd®h® 50 x9.81(0.75)* (0.75)

3EII 3x200x10° x1.4x107° x1
...(Herea=5b=0.75m)

18

=70 x 10 af

28

E =123 x 10



- Theory of Machines

We know that static deflection due to uniformly distributed load or mass of the shaft,

5
5= xwl“_ 5 2434%9.81(1.5)" >
- =56x10m

S 384 EI 384 200x10° x1.4x10°

... (Substituting, w = mg X g)
We know that frequency of transverse vibration,

0.4985 0.4985
Jn= - 56 X110~ Hz

3+, +177S \I7o %1070 + 123107 +

1.27
=324 Hz

Since the whirling speed of shaft (V) in r.p.s. is equal to the frequency of transverse vibration
in Hz, therefore

N,=32.4rp.s. =32.4x60=1944 r.p.m. Ans.

Example 23.7. 4 vertical shaft of 5 mm diameter is 200 mm long and is supported in long
bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any
increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation
and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre
of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m’.

Solution. Given : d=5mm = 0.005m; /=200 mm=0.2 m ; m =50 kg ; ¢=0.25 mm
=0.25x 10 m ; E =200 GN/m’ = 200 x 10’ N/m’

Critical speed of rotation
We know that moment of inertia of the shaft,
1="xd*="(0.005)"=30.7x10"> m*
64 64
Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We know
that the static deflection at the centre of the shaft due to a mass of 50 kg,
3
=" 50x9.81(0.2) ~333x107 m
192 EI  192x200x10 x30.7x10 ~2

(e W=mg)
We know that critical speed of rotation (or natural frequency of transverse vibrations),

04985

e v 8.64 r.p.s. Ans.
4/3.33x10"

Maximum bending stress
Let o = Maximum bending stress in N/mz, and
N = Speed of the shaft = 75% of critical speed = 0.75 N,.. . . (Given)
When the shaft starts rotating, the additional dynamic load (/) to which the shaft is subjected,
may be obtained by using the bending equation,

M:E or M:ci

I »1
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We know that for a shaft fixed at both ends and carrying a point load (/) ) at the centre, the
maximum bending moment

M: Wl.l
8
Wl.l:col “.(.-.y :d/Z)
8  d/2 !
and ol 8 ox30.7x107" 8 »

- — x——=049%x100N
= 0.005/2 0.2

1= x
Additional deflecfiéf dué to load W,
W, . 049x10°g

y="1x§= x3.33x1073=3327 102 &

w 50 x 9.81
We know that
_ ieﬁ _ te
YooY TTNY ... (Substituting =N and =N
1
\|7) | -1 LWJ c c
3.327x10726 = i0-25x1?2’3 —+032x1073
N

C | _1
0.75'N, )
6=032x107/3.327x1071% =0.0962x10° N/m? .- Taking + ve sign )
=96.2 x 10° N/m” = 96.2 MN/m” Ans.
Example 23.8. A vertical steel shaft 15 mm diameter is held in long bearings 1 metre

apart and carries at its middle a disc of mass 15 kg. The eccentricity of the centre of gravity of the
disc from the centre of the rotor is 0.30 mm.

The modulus of elasticity for the shaft material is 200 GN/m’ and the permissible stress is
70 MN/m’. Determine : 1. The critical speed of the shaft and 2. The range of speed over which it
is unsafe to run the shaft. Neglect the mass of the shaft.

WP

[For a shaftwith fixed end carrying a concentrated load (W) at the centre assume d= o

w .l

and M = < where § and M are maximum deflection and bending moment respectively].

Solution. Given : d=15mm=0.015m;/=1m;m=15kg; e=0.3 mm
=0.3x 10" m; E=200 GN/m* =200 x 10’ N/m’ ; ¢ = 70 MN/m* = 70 x 10° N/m’

We know that moment of inertia of the shaft,

I1="xd*="(0015*=2.5x10" m*
64 64

1. Critical speed of the shaft

Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ends. We
know that the static deflection at the centre of shaft,

3
L 15%9.81x1°
192 I 192 x 200 x10 x 2.5x10

=15x10°m  ..(v W=mg)
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Natural frequency of transverse vibrations,
f= 0.4985  0.4985
= =
& s x107

We know that the critical speed of the shaft in r.p.s. is equal to the natural frequency of
transverse vibrations in Hz.

Critical speed of the shaft,
N,=12.88r.p.s. = 12.88 x 60 = 772.8 r.p.m. Ans.

=12.88 Hz

2. Range of speed

Let N, and N, = Minimum and maximum speed respectively.

When the shaft starts rotating, the additional dynamic load (W, = m,.g) to which the shaft is
subjected may be obtained from the relation

M o./
2_°  x M =2
I »n N
d
Since ol _megl g yi=_, therefore
8 8 2
my.gl ol
8 d/?2
8x2xox] 8x2x70x10°x2.5x107°
or my = = =19kg
dgl 0.015 x 9.81x1
Additional deflection due to load W, = mg,
/4 19
y=lxg="1x5=""x1.510°=1.9x10"° m
w m 15
We know that,
+e Y _ 1
V=i or i?— - 271
(b 17 \N)
... (Substituting, ®. =N, ,andw=N)
3 (N Y 0.3
2 1910 ] or L J 1=+ —=%016
0310 TN N 1.
<1-1
U
(NY
L €| =1£0.16=1.16 or 0.84
N
... (Taking first plus sign and then negative sign)
N,
or N= N, c

or —_—
1.16 0.84
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2.
N = Ne =77 8=718rpm
1.16  +1.16
N, 772.8
and Np=_°¢ = =843 r.p.m.

V0.84  +0.84

Hence the range of speed is from 718 r.p.m. to 843 r.p.m. Ans.

Frequency of Free Damped Vibrations
(Viscous Damping)

We have already discussed that the motion of a body is resisted by frictional forces. In
vibrating systems, the effect of friction is referred to as damping. The damping provided by fluid
resistance is known as viscous damping.

We have also discussed that in damped
vibrations, the amplitude of the resulting vibration
gradually diminishes. This is due to the reason that a Spring
certain amount of energy is always dissipated to
overcome the frictional resistance. The resistance to

the motion of the body is provided partly by the Mean position
medium in which the vibration takes place and
partly by the internal friction, and in some cases Position after . - -
partly by a dash pot or other external damping timet -
device.
Consider a vibrating system, as shown in of
Fig. 23.17, in which a mass is suspended from one Fig. 23.17. Frequency of free damped

end of the spiral spring and the other end of which is vibrations.
fixed. A damper is provided between the mass and
the rigid support.

Let m = Mass suspended from the spring,
s = Stiffness of the spring,
x = Displacement of the mass from the
mean position at time ¢,
& = Static deflection of the spring
=m.g/s, and

¢ = Damping coefficient or the damping force

per unit velocity.
Since in viscous damping, it is assumed that the frictional
resistance to the motion of the body is directly proportional to the
speed of the movement, therefore

Damping force or frictional force on the mass acting in
opposite direction to the motion of the mass

dx

dt

Accelerating force on the mass, acting along the motion
of the mass

=c X

Ri\_/eting Machine
d2 Note : This picture is given as

mx _2{ additional information and is not a
dt direct example of the current chapter.
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and spring force on the mass, acting in opposite direction to the motion of the mass,
=5.X
Therefore the equation of motion becomes
d*x ( dx Al

mx——=—| cx—+5x
dr \ dt
...(Negative sign indicates that the force opposes the motion)

d*x dx
or mx +cx__+s5x=0

dr’ dt

dix ¢ dx s

or 4+ x_—+_xx=0

a* m dt m

This is a differential equation of the second order. Assuming a solution of the form
x = ¢" " where k is a constant to be determined. Now the above differential equation reduces to

2 kt € kt S kt [ dx it d’x 2kz—|
ke +—Xxke +—xe =0 |~ —=ke -
¢ Tm m | dr ,and ,=k.e ]
dt |
or K2+ Sxk+=0 ()
m m
c
m
and k=
— %
2m

The two roots of the equation are

2
by =— "4 (C\ - =

2m E m
2
c c \ K}
k2 e —. —_— —_—
and 2m (2m )| m

The most general solution of the differential equation (i) with its right hand side equal to
zero has only complementary function and it is given by

x=Cé"+ G, (1))
where C| and C, are two arbitrary constants which are to be determined from the initial conditions of
the motion of the mass.

It may be noted that the roots k; and k, may be real, complex conjugate (imaginary) or equal.
We shall now discuss these three cases as below :

* A system described by this equation is said to be a single degree of freedom harmonic oscillator with
viscous damping.
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1. When the roots are real (overdamping)

(¢ YV s

If \Z_J > . then the roots k| and k, are real but negative. This is a case of overdamping
m

or large damping and the mass moves slowly to the equilibrium position. This motion is known as
aperiodic. When the roots are real, the most general solution of the differential equation is

x=C M+ G
e aml [, o
N B =1k
‘72m+\2m) m | ‘72m7\2m)m|
:Clel‘ J-i-C2€|‘ J

Note : In actual practice, the overdamped vibrations are avoided.

2. When the roots are complex conjugate (underdamping)

s (cY

If —| \2_|) , then the radical (i.e. the term under the square root) becomes negative.
m m

The two roots k; and &, are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are

2m 2m
c 2
s _[c
and fy=———i |—"| —
2m m \2m
where i is a Greek letter known as iota and its value is /=1 - For the sake of mathematical calcu-
lations, let
C N 2

- - s C_\Z =®,= 2
=a;m=(0)n);and m (2mJ 4= \(@,) —a

2m
Therefore the two roots may be written as

kj=—a+iwg ; and ky=—a—1iwyg
We know that the general solution of a differential equation is

X = C] ek1t+ C2 ekzt: C] e(—a+i0)d )t+ C2 e(—a—icod )i

= e (Cy et 4 Cy ety (Using """ =e" x € ... (i)
Now according to Euler’s theorem
10— cosO+isin0®;and e’ ?=cos O —isin®

Therefore the equation (i) may be written as
x=e " [Ci(coswy .t + i sin 0g.) + Ca (coswg .t — i it wg.1)]
= [(C1+Cy)cos wg.t+i(Cy— Cy)sinwy.t)]
Let Ci+Cy=A4,and i (C;—C,)=B
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x=e Y (Acoswy.t+ Bsinwg.f) ... (v)
Agaln let A =Ccos 6 ,and B = Csin 0, therefore
B

c=+J42, g2 »and tan@:g

Now the equation (iv) becomes
x=e Y (CcosOcos wy.t+CsinOsin wy.f)

=Ce “cos (0.t — 0) (%)

If ¢ is measured from the instant at which the mass m is released after an initial displace- ment
A, then

A=Ccos0 .. . [Substituting x = 4 and ¢ = 0 in equation (v)]
and when @=0,thend=C
The equation (v) may be written as

x=Ae " cos oy .t )

c
where W7 = ( J J((,)n) — 4% ;and a_Z

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

m

damped frequency is wy  and the amplitude is Ae™ ™ which diminishes exponentially with time as

shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its
inertia, yet it overshoots and the oscillations may take some considerable time to die away.

e f‘j—bq—I —v|

Exponentlal decreasing curve

«— = —»l

——Displacement—>

Fig. 23.18. Underdamping or small damping.
We know that the periodic time of vibration,

;o 2n 2n _ 2n
o= ==
©d i_(c\ \/(wn)2*02
m LZm J
and frequency of damped vibration,
1 (OF] 2
1 si(c) ..

fa= —_ —_ — P_d == o

7, = = (0,)" —a” = o | em ) (vii)
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Note : When no damper is provided in the system, then ¢ = 0. Therefore the frequency of the undamped

vibration,
1 f K
Jn= 2n \'m
... [Substituting ¢ =0, in equation (vii)] §
It is the same as discussed under free vibra-
tions.

3. When the roots are equal (critical dampil&g™"
(Y s
If | — | = —, then the radical becomes
2m m

zero and the two roots k; and k, are equal. This is a
case of critical damping. In other words, the critical
damping is said to occur when frequency of damped
vibration (f}) ¥s zefo (i.e mo?lon is aperiodic). This rotates on the same axle as the wheel.
type of damping is also avoided because the mass Here a disc brake is being tested
moves back rapidly to its equilibrium position, in the oo - This picture is given as additional information

In a disc brake, hydraulic pressure forces
friction pads to squeeze a metal disc that

shortest possible time. and is not a direct example of the current chapter.
For critical damping, equation (i7) may be
written as
<, [ e \/T 1
- O]
x=(C1+Ce™ _(Ci+Cppe e =\ =,
|-| 2m m ~I

Thus the motion is again aperiodic. The critical damping coefficient (c.) may be obtained by
substituting ¢, for ¢ in the condition for critical damping, i.e.

2
c s {
= = or ¢ =2m 2 = om X@y,
2m m m

The critical damping coefficient is the amount of damping required for a system to be critically
damped.

Damping Fa ctor or Damping Ratio

The ratio of the actual damping coefficient (c) to the critical damping coefficient (c,) is
known as damping factor or damping ratio. Mathematically,

_¢_ ¢

Damping factor == o (Fee=2n0,)
Cce  2m.oy,

The damping factor is the measure of the relative amount of damping in the existing system with
that necessary for the critical damped system.

Logarithmic Decrement

It is defined as the natural logarithm of the amplitude reduction factor. The amplitude
reduction factor is the ratio of any two successive amplitudes on the same side of the mean position. If x;

and x, are successive values of the amplitude on the same side of the mean position,
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as shown in Fig. 23.18, then amplitude reduction factor,

X1 Ae™® o
T T i = constant
x Ae a (t+tp)

where 7, is the period of forced oscillation or the time difference between two consecutive amplitudes. As
per definition, logarithmic decrement,
( X1 \ at

5=log | F loge ”
\#

or 5 =log

C><27:
= 2m _ ¢x2n L ce=2maoy,)
\2 [c)
, 1_( c | . 1_|T|
2m.wn) L¢)
21X ¢

Viee -

In general, amplitude reduction factor,

X1_Xp_X3_ _% at
= === = ¢ P =constant
X2 X3 X4 Xn+1

Logarithmic decrement,

8=10g(x”\:a.t= 21X ¢

eanHJ g \[(cc)z—c2

Example 23.9. A vibrating system consists of a mass of 200 kg, a spring of stiffness
80 N/mm and a damper with damping coefficient of 800 N/m/s. Determine the frequency of vibration
of the system.

Solution. Given : m =200 kg ; s = 80 N/mm = 80 x 10° N/m ;¢ =800 N/m/s We
know that circular frequency of undamped vibrations,

® =\F= 80 x10°
n o \l 200 =20 rad/s




Chapter 23 : Longitudinal and Transverse Vibrations =

and circular frequency of damped vibrations,

@d:\/(wn)z_az=\/((Dn)2—(c/2m)2 ... (va=c/2m)

= J(20)> —(800/2x200)® = 19.9 radss
Frequency of vibration of the system,
Ja=og/2n=19.9/2n=3.17 Hz Ans.

Example 23.10. The following data are given for a vibratory system with viscous damp-
ing:

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decreases to 0.25 of the
initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.

Solution. Given : m = 2.5 kg ; s = 3 N/mm = 3000 N/m ; x,= 0.25 x,

We know that natural circular frequency of vibration,

fs /3000
o, =,|—=,—— =34.64rad/s
m 2.5

Let ¢ = Damping coefficient of the damper in N/m/s,
x; = Initial amplitude, and

x¢ = Final amplitude after five consecutive cycles = 0.25 x, ...(Given)
We know that

X_Y2_X3_X4_Xs

X2 X3 X4 X5 X6

X x x x x x [x \5
or —1:—1><—2><—3><—4><—5:|—1 |

X X3 X3 Xz X5 X5 \X2)

x  [x\US 1/5
Ao ) _(_lx ) —4@V3=132
X %6 ) 0.25x; )
We know that
log (xl \ —ax 2n
. g2
g ‘\/(C‘)n )2 - a2
2n 2
log,(1.32) =ax——o-——ou  or 02776 = 24X 4T
J(34.64)2 — &2 V1200 -
Squaring both sides,
2
395a
0.077 = —="— or  924-0.077a 2=39.5 42
1200 —a

- @ =2335 or a=1.53
We know that a=c /2m or c=ax2m=1.53x%x2x25=7.65N/m/s Ans.
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Example 23.11. An instrument vibrates with a frequency of 1 Hz when there is no damping.
When the damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz.
Find 1. the damping factor, and 2. logarithmic decrement. Y

Solution. Given : f,=1Hz; £,= 0.9 Hz e
1. Damping factor

Let m = Mass of the instrument in kg,
¢ = Damping coefticient
or damping force per unit velocity
in N/m/s, and

¢, = Critical damping coefficient in
N/m/s. Guitar

We know that natural circular frequency of undamped vibrations,

®, =21 f,=2nx1 =6.284  rad/s

and circular frequency of damped vibrations,
0g=2mx fy=21x0.9=5.66  rad/s

We also know that circular frequency of damped vibrations ( @, ),

5.66 =(0y ) —a® =4/(6.284) — o>

Squaring both sides,
(5.66)* = (6.284)" —a* or 32 =39.5 -4
o =15 or a=2.74
We know that, a=cl2m or c=ax2m=274%2m= 548 m N/m/s
and Ce=2m.0p=2m x 6284 =12.568 m N/m/s

Damping factor,
c/c.=548m/12.568 m =0.436 Ans.

2. Logarithmic
decrement

We know that logarithmic decrement,

21c 2nx5.48m
3 =3.04 Ans.

6: = _ ==
\/(cc e \/(12.568m)2_(5,4gm)2 11.3

Example 23.12. The measurements on a mechanical vibrating system show that it has a
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness
5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the
mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic
decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given : m = 8 kg ; s = 5.4 N/mm = 5400 N/m

Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore

Damping coefficient (actual),

¢ =40 N/m/s
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1. Critical damping coefficient

We know that critical damping coefficient,
5400
Ce =2m.o, =2mx /i =2x8 ’T =416 N/m/s Ans.
m

We know that damping factor

2. Damping factor

_¢_ 40
~— —— =0.096 Ans.
c. 416
3. Logarithmic
decrement
We know that logarithmic decrement,
5 2me _ 27tx 40 0.6 A
= = =0.6 Ans.
Jeo? - V4167 -0y
4. Ratio of two consecutive amplitudes
Let x, and x,,; = Magnitude of two consecutive amplitudes, We

know that logarithmic decrement,

Yn_ 8= (2.7)90=1.82 Ans.

5=log |— Xp —| "
e
Xp+1 j Xn+l

Example 23.13. 4 mass suspended from a helical
spring vibrates in a viscous fluid medium whose resistance
varies directly with the speed. It is observed that the frequency
of damped vibration is 90 per minute and that the amplitude
decreases to 20 % of its initial value in one complete vibration.
Find the frequency of the free undamped vibration of the
system.

Solution. Given : ;= 90/min = 90/60 = 1.5 Hz We

know that time period,

1,= 1/f,=1/1.5=0.67s Helical spring suspension of a
Let x, = Initial amplitude, and two-wheeler.

T . Note : This picture is given as
X, = Final amplitude after one additional information and is not a

complete vibration direct example of the current chapter.
=20%x,=0.2x,
... (Given)
We know that
log (xl ) =a.t or 10ge(|xl\ =dx 0.67
e LX—J P 02 x
2 Y

log, 5=0.67a or 1.61=0.67ao0r a =24 ...(~log,5=1.61)
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We also know that frequency of free damped vibration,

fa= %\/(mn Y -d

or (0 )= Crx f3)* +d° ... (By squaring and arranging)
= 2nx1.5)> +(2.4)> =946
o o, =9.726 rad/s
We know that frequency of undamped vibration,

=0 = 9.726 =155 Hz Ans.
2n 2n
Example 23.14. 4 coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at
the free end. The motion is resisted by the oil dashpot. It is found that the amplitude at the beginning
of the fourth cycle is 0.8 times the amplitude of the previous vibration. Determine the damping
force per unit velocity. Also find the ratio of the frequency of damped and undamped vibrations.

Solution. Given : s =4 N/mm = 4000 N/m ; m = 20 kg
Damping force per unit velocity
Let ¢ = Damping force in newtons per unit velocity i.e. in N/m/s
x,, = Amplitude at the beginning of the third cycle,
X,+1 = Amplitude at the beginning of the fourth cycle = 0.8 x,,
... (Given)
We know that natural circular frequency of motion,

O)n:\/E: fﬂ=l4.l4 rad/s
m 20
27

and log (xn \zax
e | ——
(gxn +1) /(C‘)n Y- a?
or log' ™" ' 2n
=qagxX
e
L0-8 an V(14,142 - &2
21 21
log, 1.25=ax—= or 0223 =ax ———
V200 - 7200 - a?
Squaring both sides
2 2
4 2
005=%""" _ a
200-a* 200 - 4?
0.05 x 200 — 0.05 &* = 39.54 or  39554°=10
a=10/39.55= 025 or a=05
We know that a=c/2m

c=ax2m=05x2x20=20 N/m/s Ans.
Ratio of the frequencies

Ogq

Let fn = Frequency of damped vibrations = P
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®p
fno = Frequency of undamped vibrations = o

o, \l 14.14

[ =N, -)

Sl _oq 28 oy _ (0, -a _ J(14.14°- (0.5
2 2n o, o,

=10.999 Ans.

Example 23.15. 4 machine of mass 75 kg is mounted on springs and is fitted with a
dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found
that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations.
Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-
pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the
undamped vibration ; and 3. the periodic time of the damped vibration.

Solution. Given : m =75kg ; s =10 N/mm = 10 x10° N/m ;x,=384mm=0.0384m ;
x3= 6.4 mm = 0.0064 m

Since the stiffness of each spring is 10 x 10° N/m and there are 3 springs, therefore total
stiffness,

5 =3x10 10> = 30 x10° N/m
We know that natural circular frequency of motion,

o = [s=Box10® =20
n — \l 73 rad/s
m

1. Resistance of the dashpot at unit

velocity
Let ¢ = Resistance of the dashpot in newtons at unit velocity i.e. in
N/m/s,
x, = Amplitude after one complete oscillation in metres, and
x, = Amplitude after two complete oscillations in metres.
We know that X_X2
X X3
(Y oy % v x ox (2
P! R e R A
(x2) X3 L

X ()2 (0.0384\1/2
1o = | =245

or x \x)  10.0064)

We also know that

| X1 3 _ 2n
0g, [g =ax —,—(mn )2 —
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log, 2.45 = ax ——208

V(20)? - &?

2
X 2 .
0.8951 = _axer or 0.8= % ... (Squaring both sides)
V400 —a* 400-a
a* =794 or a=28
We know that a=c/2m

c=ax2m=2.8x2x75=420 N/m/s Ans.

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration

Let 1 = Frequency of damped vibration = ®d
2n
Wy
fur = Frequency of undamped vibration = o
o og 2n oy ,(U)n Y- d? -
FE=E2m e Cw s ® = 20 =0.99 Ans
n2 n n n
3. Periodic time of damped vibration
We know that periodic time of damped vibration
_2n 2n B 2n
= =0.32s Ans.

01 Jio?-dt Q0?28

Example 23.16. The mass of a single degree damped vibrating system is 7.5 kg and makes
24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to
critical damping.

Solution. Given : m = 7.5 kg

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

f,=24/14=1.7
and o, =2nx f,=2nx1.7=10.7 rad/s
1. Stiffness of the
spring
Let s = Stiffness of the spring in N/m.

Weknow that (@, )2=s/m ors=(w,)>m=(10.7)>7.5 =860 N/m Ans.

2. Logarithmic decrement

Let x; = Initialamplitude,
x¢ = Final amplitude after five oscillations = 0.25 x, ... (Given)
5
x x x x x x (xV [ x x x x xI
U IVEIVE RIS S Y Led=2-3_4s
X6 Xy X3 X4 X5 Xg



\x2)

X3

X4

X5

X6 |
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X (x\l/S(x

1/5
A1 ) =@»"3=132

or =L |
Xy x5 ) LO.ZS x1)
We know that logarithmic decreme?t, \
8= log 11 1og 132 =028 Ans.
el —— e
\3)
3. Damping
factor
Let ¢ = Damping coefficient for the actual system, and
¢, = Damping coefficient for the critical damped system.
We know that logarithmic decrement ( § ),
028 = ax?2m _ ax?2m
Jo, - 0772 -a
2
a” x39.5
0.0784 = —— ... (Squaring both sides
114.5- & (Squaring )
8.977-0.0784 a’ = 39.5 @’ or  a=0227 or a=0476
We know that a=c/2m or c¢=ax2m=0476x2x75=72N/m/s Ans.
and c.=2m.o,=2x7.5x10.7=160.5 N/m/s Ans.

Damping factor = c/c. = 7.2/ 160.5=0.045 Ans.

Fre quency of Under Damped Forced
Vibrations

Consider a system consisting of spring, mass and
damper as shown in Fig. 23.19. Let the system is acted upon
by an external periodic (i.e. simple harmonic) disturbing
force,

Fy =Fcos .t
where F = Static force, and
®= Angular velocity of the

periodic disturbing

time t
force.
When the system is constrained to move in vertical 7
guides, it has only one degree of freedom. Let at sometime ¢, Fig. 23.19. Frequencg of under
the mass is displaced downwards through a distance x from damped forced vibrations.

its mean position.

Using the symbols as discussed in the previous article, the equation of motion may be written
as

2
mxd°x —_ ydv_ ,  coso.
—5— ¢ sx F t
dt dt
2
mx d X ¢ dx cos®.

or _—



()}
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This equation of motion may be solved either by differential equation method or by graphi- cal
method as discussed below :

1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is some
function in #. The solution of such type of differential equation consists of two parts ; one part is the
complementary function and the second is particular integral. Therefore the solution may be written as

xX=x; tx,
where x; = Complementary function, and
x, = Particular integral.

The complementary function is same as discussed in the previous article, i.e.

xp = Ce " cos (gt - 0) .. (i)
where C and @ are constants. Let us now find the value of particular integral as discussed below : Let

the particular integral of equation (i) is given by

Xy = Bj sin .t + By cosm.t ... (where B, and B, are constants)
dx .

— = Bj.ocos .t — By.msin .t
dt

2 .
d”x__ o’sine. — .0 cos .
and — B t By t
dt

Substituting these values in the given differential equation (i), we get

m (—B1.0” sin o.t — By.00> cosw.7) + ¢ (B}.0C0S @.f — By .0sin @.7) + 5 (B} Sin @.¢ + By 0S0.1)

=Fcos o.t

or (-m.B; o - c.0.By +5.By)sinw.t+ (—m.eo* .By +c.0.B +5.By) cos .t
=F cos 0.t

or [(s - m.m2)31 —c.0.By ]sinm.t + |—Lc.u).Bl +(s— m.aw’ )By —Ucosu).t

=F cos ®.t + 0 sin ®.¢
Comparing the coefficients of sin w# and cos ®¢ on the left hand side and right hand side
separately, we get

(s — mw?)B) - co.By=0 . ... (iii)
and c.0.B+(s—mo?)By=F ... (v)
Now from equation (iii)

(s — mw?) Bi=c.0.B)

Bz :—XBl (V)

Substituting the value of B, in equation (iv)

(s— m.(oz)(s - m.u)z)
C’(,t)‘Bl+ XBliF
.0
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. B+ (s — mw’)? Bi=co.F

Bl[cz.o)z + (s — m.w’ )2] =co.F

c.o.F
Bi=—— 2.2
.0+ (s —mo”)
2
S — m.oy c.o.F .
and By= X— ... [From equation (v)]

.00 o’ + (s — m.o? )2

F(s—mo®)

.o +(s — m.o? )2

The particular integral of the differential equation (i) is

Xy = By sin @.t + By cosm.t

_ co.F x sin o+ F(s—ma®)  xcos o
Eol+ (s— m.o? )2 .o+ (s— m.o® )2
= F rc.oasin .+ (s — m.oaz) cos m.t—| ... (i)
o’ + (s— m.coz)2
Let c.o=Xsin¢; and s — m.o> = X cosd
X _ \/62.0)2 +(s - Mo )2 ... (By squaring and adding)

Note : This picture is given as additional information and is not a direct example of the current chapter.
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and tan =  C.O or o= tan”! co )
- —
5 — m.o? s —m.o’)
Now the equation (vi) may be written as
F . .
== 3 [X sin ¢.sin of + X cos pcosmt ]

2.0 +(s —m.ooz)

=5 £X 22><(:os(oo.t—d))
.0+ (s —m.o’)

2 252
F¢ .o+ (s —mo
= ‘72122 ( 2; x €os (.t — ¢)
.o+ (s — mo”)

B F
\/cz.(;)2 +(s—m.m2)

The complete solution of the differential equation (7)) becomes
xX=x;tx,

x cos (m.t — ¢)

F
\/c2 o+ (s —m.(nz)2
In actual practice, the value of the complementary function x; at any time ¢ is much smaller as

compared to particular integral x,. Therefore, the displacement x, at any time #, is given by the
particular integral x, only.

=C.e " cos(wg.t—0)+ x cos(o.t — )

F
X =
\/C2.(D2 +(s 7m.0)2)2

This equation shows that motion is simple harmonic whose circular frequency is  and the
F

x c0s (.t — ) ... (vi)

amplitude is .
\/02 @+ (s— m.o’ )2
A little consideration will show that the frequency of forced vibration is equal to the angular
velocity of the periodic force and the amplitude of the forced vibration is equal to the maximum
displacement of vibration.

. Maximum displacement or the amplitude of forced vibration,

F
X =

max . (vili
cz.(x)2+(s—m.m2)2 (viti)

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes
place.

2. The equation (viii) may be written as
Fls

xmax:
\/02.(92 N (s —mo” )
2 2
s s

... (Dividing the numerator and denominator by s)



Chapter 23 : Longitudinal and Transverse Vibrations =

*o

2
62.0)2 m.o)2 \
7t 1- J . .. (Substituting F/s = x,)

Ky N

where x is the deflection of the system under the static force /. We know that the natural frequency of free
vibrations is given by

()2 =s/m
Xo
2
A w? | o? ... (ix)
> T 2
s (@)
3. When damping is negligible, then ¢ = 0.
2
X X, (,) Xy xs/m
Xmax ZO D 3 _(_m_)f_mz_o = r 2 —|

,7_((’)»)270) n o (op) =s/m
(@) L ]
B F

Tm(o,) —o (v F=xp5) ... ()

h ]

4. At resonance ®= ,, . Therefore the angular speed at which the resonance occurs is

s
0=0, = \/% rad/s

and Kimax = Xo X . .. [From equation (ix)]
.0,

Xmax =

2. Graphical
method

The solution of the equation of motion for a forced and damped vibration may be easily
obtained by graphical method as discussed below :

Let us assume that the displacement of the mass (m) in the system, as shown in Fig. 23.19,
under the action of the applied simple harmonic force F cos .t is itself simple harmonic, so that
it can be represented by the equation,

x = Acos (ot — ¢)
where 4 is the amplitude of vibration.
Now differentiating the above equation,

D _odsin (0.0 §) = ©.4 cos[90° + (0. = ¢) |

t
délx

and 2 = fcoz.ffos(a). 70) = o’ cgs [180° +(o. 7 4))]
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Elastic force i.e. the force required to extend the spring

=s5.x = 5.Acos(®.t — )

Disturbing force i.e. the force required to overcome the resistance of dashpot

=c xfz c.0.A4 cos[90° + (0.t - ¢)]

dt
and inertia force i.e. the force required to accelerate the mass m
d’x 5
= x = % cos [180° + (. — ¢)]
m —= m A4 t
dt

L (ot —¢)

™l

()

Fig. 23.20. Graphical method.

The algebraic sum of these three forces at any given instant must be equal to the applied
force Fcosmt . These forces are represented graphically in Fig. 23.20 (a). The vector OP repre-
sents, to some suitable scale, the elastic force (of maximum value s.4), at an inclination (®.7 — ¢)
to the vertical. The vector OQ (of maximum value cw.A ) and vector OR (of maximum value

m.o’ A ) represents, to the same scale, the disturbing force and inertia force respectively. The vec- tors
OP, OQ and OR are at successive intervals of 90°.

The projected lengths Op, Og and Or represent the instantaneous values of these forces at
time 7 and Os (the algebraic sum of Op, Og and Or) must represent the value £ cos .t of the
applied force at the same instant. Thus the force vector OS must be the vector sum of OP, OQ and

OR or force F must be the vector sum of 5.4, ¢.®.4 and m.o’ A , as shown in Fig. 23.20 (). From the
geometry of the figure,

F=oc =+(0d) +(cd)? =~(0a—ad)?® +(cdy’

—5.A = mo? AP + (c.od) = A(s - mo? Y+ Puor?

F
A(Or Xpax) = ... (Same as before)

\/(s —m.o? )2 + P’

cd
tan p= = c.0.4 _ c.0?

and 5 ... (Same as before)

od sA-mo*Ad s-mo
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Magnific ation Fa ctor or Dynamic
Magnifier

It is the ratio of maximum displacement of the forced vibration (x,,,._) to the deflection
due to the static force F(x,). We have proved in the previous article that the maximum displace-
ment or the amplitude of forced vibration,

X,

Xmax = < 2
2 [ 2 )
2 +1- 3|
21 @?))
11
10 =imiz
glllllz
ENIIE 180°
? E ‘Ig e--tpiiiie
c o IEEE DTS S
AR
[
7 | ‘#.’ 140°
N 0 o1 1& ]
=] = L ) @
E 6 & o 120° &
g /! T g
8 }F : o
£ 5 5 100°
I e | \
s F=0'2< LA
4 . WL R 80°
3 - / \ 60°
—=0.5%,’
P Y . B 10
1 S — 20°
0 S WUTTT AT ] )
S —v-——; - ————-—vY
wn

Fig. 23.21. Relationship between magnification factor and phase angle for different values of @/ ®,, .

Magnification factor or dynamic magnifier,

xmax 1
D= = > - (@)
To c2.m2 (1 o> \
+ —
2 @2
_ 1
(200 [ o ¥
+ —
e 1 @?)
[ [X0) 2¢c.® 2c0  — 200?—‘
Y —L—Qm@_)l o
i_ 2mx n cn
m
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The magnification factor or dynamic magnifier gives the factor by which the static deflection
produced by a force I (i.e. x,) must be multiplied in order to obtain the maximum amplitude of the

forced vibration (i.e. x,,,,) by the harmonic force F' cos w.t

max.
Xpax = Xo XD
Fig. 23.21 shows the relationship between the magnification factor (D) and phase angle ¢
for different value of o/ w,, and for values of damping factor c¢/c.= 0.1, 0.2 and 0.5.

Notes: 1. If there is no damping (i.e. if the vibration is undamped), then ¢ = 0. In that case, magnification

factor,
2
D= Xmax — 1 _ (w,) (@
X 2 )2 iy
0 ( 0)2 \ n

1—
2
" wn?)
2. At resonance, ®= ®y, . Therefore magnification factor,

D_xmax_ N

Xo c.0p

Depending upon the case bridges can be treated as beams subjected to
uniformly distributed leads and point loads.

Example 23.17. 4 single cylinder vertical petrol engine of total mass 300 kg is mounted
upon a steel chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts
of the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple
harmonic motion. A dashpot is provided whose damping resistance is directly proportional to the
velocity and amounts to 1.5 kN per metre per second.

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of
forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2. the speed of the
driving shaft at which resonance will occur.

Solution : Given. m =300 kg; § =2 mm =2 x 10°m; m;=20kg; /=150 mm
=0.15m;c¢=1.5kN/m/s = 1500 N/m/s ; N= 480 r.p.m. or o= 27x 480 / 60 =50.3 rad/s
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1. Amplitude of the forced vibrations
We know that stiffness of the frame,
s=m.g/5=300x9.81/2x10°=1.47 x 10° N/m
Since the length of stroke ( /) = 150 mm = 0.15 m, therefore radius of crank,
r=1/2=0.15/2=0.075m
We know that the centrifugal force due to the reciprocating parts or the static force,

F=my.0%r=20(50.3)"0.075 = 3795 N
Amplitude of the forced vibration (maximum),

F

\/cz.co2 +(s— m.coz)2

Xmax =

- 3795
\{1500)2 (50.3)% + [1.47 x10° — 300 (50.3)* 1

3795 3795 _
= == =53x10"m
/5.7 x10% + 500 x10°  710x10
= 5.3 mm Ans.
2. Speed of the driving shaft at which the resonance occurs
Let N = Speed of the driving shaft at which the resonance occurs in

r.p.m.
We know that the angular speed at which the resonance occurs,

o=0 = [g= N.47x10° =70
" - “—300 rad/s

- N=wx60/2n=70x60/2n = 668.4rp.m. Ans.

Example 23.18. 4 mass of 10 kg is suspended from one end of a helical spring, the other
end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of
150 cos 50 t N is applied at the mass in the vertical direction, find the amplitude of the forced
vibrations. What is its value of resonance ?

X

Solution. Given : m = 10 kg ; s = 10 N/mm = 10 x 10° N/m ; x5 =B

Since the periodic force, F\, = F cos w.t= 150 cos 50 ¢, therefore

Static force, F=150N
and angular velocity of the periodic disturbing force,
®= 50 rad/s

We know that angular speed or natural circular frequency of free vibrations,

3
wn:\/E: 10107 _ 3} 6 raass
m \| 10
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Amplitude of the forced vibrations

Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,
therefore, the ratio of initial amplitude (x,) to the final amplitude after four complete oscillations (x;) is

given by A

x x x x x [x) [ x x x x)
A 12 3y 4 _ 1 | [+L=2=3=4

Xs Xy X3 X4 x5 \xp) U % oy oxy ¥s)
x (xva [ x w4 ( 3
L 1] i VT =0) 4= 178 s =t
¥ =|lx | =10 -
> \s) L) \ )

We know that
log [xl\\—ax n
. —gx—r
g \/(C‘)n)27112

2n ax2m

loge 1.78 = a x ——— e 01 0.576= 425"
J(31.6)% - & V1000 — &

Squaring both sides and rearranging,
39.832a° =332 or a =8335 or a=2.887
We know that a=cl2m or c=ax2m=2.887x2x10=57.74 N/m/s and

deflection of the system produced by the static force F,
x,=F/s=150/10 x 10° = 0.015 m
We know that amplitude of the forced vibrations,

Xo

AP o 2
5 +[1— 2]
s L (@,)]

0.015 0015
(57.74)% (50)° || 1 (50 \|2 ‘-|2 J0.083+2.25
+ —_

max —

aox10y | B0y

0015

1.53

—98x10° m= 9.8 mm Ans.

Amplitude of forced vibrations at resonance

We know that amplitude of forced vibrations at resonance,

X =x X ’ 0.015 10x10° 0.0822
- =0. X— =0 —
max 0 o, 5754 %316 m = 82.2 mm Ans.

Example 23.19. 4 body of mass 20 kg is suspended from a spring which deflects 15 mm
under this load. Calculate the frequency of free vibrations and verify that a viscous damping force
amounting to approximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion

aperiodic.
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If when damped to this extent, the body is subjected to a disturbing force with a maximum
value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion.
Solution . Given : m =20kg; § =15mm=0.015m ; c¢= 1000 N/m/s ; F= 125N ;
f=28cycles/s

Frequency of free vibrations

We know that frequency of free vibrations,

I =L\/§=L 981 — 407 Hz Ans.
2\ & 2w\ 0.015

The critical damping to make the motion aperiodic is such that damped frequency is zero,
ie.
(cV s
)

( £)
=[Sy am? = = [, m o=
€= " x4m / 4x"M™& 5
— 4s5.m X 5 xXm L )
= (4522981, 50 _ 1023 Nimvs
0.015

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a viscous
damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to make the
motion aperiodic. Ans.

Amplitude of ultimate motion
We know that angular speed of forced vibration,

o= 2nx f=21x8 =503 rad/s

and stiffness of the spring, s=mg/ §=20x9.81/0.015=13.1 x 10’ N/m
Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,
B F
e \/cz.u)2 +(s—mo’ )
_ 125
B \/ (1023)* (50.3)* + [13.1x10° — 20 (50.3)* *
125 125

- = ~1.96% 107 m
\/2600><106+1406><106 63.7x10°

=1.96 mm Ans.

Example 23.20. 4 machine part of mass 2 kg vibrates in a viscous medium. Determine the
damping coefficient when a harmonic exciting force of 25 N results in a resonant amplitude of
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of frequency
4 Hz what will be the percentage increase in the amplitude of vibration when damper is removed
as compared with that with damping.

Solution . Given : m =2 kg ; F'=25 N ; Resonant x,,,, = 12.5 mm = 0.0125 m;
1,=02s;f=4Hz
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Damping coefficient
Let ¢ = Damping coefficient in N/m/s. We
know that natural circular frequency of the exicting force,
©,=2n/t,=2n/02 =31.42rad/s
We also know that the maximum amplitude of vibration at resonance (x,,,,, ),

25 079

= = or ¢ = 63.7 N/m/s Ans.
co, cx31.42 c

0.0125=

Percentage increase in
amplitude

Since the system is excited by a harmonic force of frequency ( /) = 4 Hz, therefore corre-
sponding circular frequency

o=2nx f=2nx4=25.14  rad/s
We know that maximum amplitude of vibration with damping,

F

\/cz.(n2 + (s — m.w? )2

Xmax =

25
\k63.7)2 (25.14)2 + [2 (31.42)* — 2 (25.14)* 7

P =s/mors = m(w, ) |

25 =2 =0.0143 m=14.3 mm

\ 256 x10°+0.5x10° 1749

and the maximum amplitude of vibration when damper is removed,

25 25
r — =0.0352m

max m (e, ) - wzjf 2[(31.42)% - (25.14)* ] 710

X

=352 mm
Percentage increase in amplitude

_352-143
14.3

Example 23.21. The time of free vibration of a mass hung from the end of a helical spring
is 0.8 second. When the mass is stationary, the upper end is made to move upwards with a
displacement y metre such that y = 0.018 sin 2 w t, where t is the time in seconds measured from
the beginning of the motion. Neglecting the mass of the spring and any damping effects, determine
the vertical distance through which the mass is moved in the first 0.3 second.

Solution. Given : t,= 0.8s;y=0.018sin2mn¢

Let m = Mass hung to the spring in kg, and

s = Stiffness of the spring in N/m.
We know that time period of free vibrations (z,), (0 8\2

[m
0.8=2m  |— —=| —| =0.0162
s o s |\2Tc |)

=146 or 146% Ans.
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If x metres is the upward displacement of mass m from its equilibrium position after time ¢
seconds, the equation of motion is given by )
m_d°x .
(-) X + = =0.018sin2x
Syx — —— X Yy t

2 or
dt s g2

The solution of this differential equation is

Y= Asm\/?x;.,_BCOS( 0018sm2m
|

J—)

.. (where 4 and B are constants)

t 0.018sin 27 ¢
+ Bcos + 2
0.0162 V0.0162  1- 412 x 0.0162

= Asin7.85t+ Bcos7.85¢+0.05sin 27t N ()}

= Asin

Now when  ¢=0, x =0, then from equation (i), B = 0.
Again when (=0, dx/dt=0
Therefore differentiating equation (7) and equating to zero, we have

dx/dt ="7.854c0s7.85t+0.05x2ncos 2nt =0 ...(+B=0)
or 7.85 Acos7.85t =—0.05%x2ncos 2t
A=-0.05x27/7.85=-0.04 . (et=0)

Now the equation (i) becomes
=—-0.04sin 7.85¢+0.05sin 2w ¢ ... .(+B=0)...(i)

-+ Vertical distance through which the mass is moved in the first 0.3 second (i.e. when ¢
=0.35s),

=—10.04 sin (7.85 x 0.3) + 0.05sin (27x 0.3)
. [ Substituting = 0.3 in equation (if)]
=—0.04 x0.708 + 0.05 x 0.951 =—-0.0283 + 0.0476 = 0.0193 m

=19.3 mm Ans.
Vibration Ist)latlon and Transmissibility
F cos of
A little consideration will show that when an

unbalanced machine is installed on the foundation, it produces Machine

vibration in the foundation. In order to prevent these vibrations or Damper

to minimise the transmission of forces to the foundation, the t

machines are mounted on springs and dampers or on some  Spring Spring

vibration isolating material, as shown in Fig. 23.22. The :>

>

A

arrangement is assumed to have one degree of freedom, i.e. it can

move up and down only. \\\\\\\\\\\\\\\\L\\\\

iodic (i.e. si Foundation
.It may be.noted that when a I.)erlodl.c (ie. 51mp1e. Fig. 23.22. Vibration isolation.
harmonic) disturbing force F cos o ¢ is applied to a machine
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of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring and
the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted (/) to the force applied (£) is known as the isolation
factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol- lowing
two forces :

1. Spring force or elastic force which is equal to s. x__, and

max>®
2. Damping force which is equal toc. ® .x,,, .
Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore the

force transmitted,
5x

max

FT = \/(s'xmax )2 + (C'(")'xmax )2

[2 2 2 .
= Xpax VS~ + .0 COX man F.

Transmissibility ratio,

2 2 2
F _ Xpax NS+ .0

g=_1 = tmaxNS TC O Fig. 23.23
F F
We know that
F ( F
Xpax=Xo X D= —<D L xo:—J
s S
5 2 c".m
g=—ns"+c.0" =D, I+ >
S K}
2 ( cox ¢ 0)\
_D1+(|2—C><_w|_\ Sl _s_c_m|_
K % @ Vl) k c n)
We have seen in Art. 23.17 that the magnification factor,
1
D= 2
2
2¢.0 ) ( w? \
| +1- 3
&9 L (o)
2
(20.0)\
+ |
o
. CeOn) )

2 2
20) [ @)
[ c.0 e ® .
&9 o)
When the damper is not provided, then ¢ = 0, and

1

1- (0 ®,)

e =

... (@)
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From above, we see that when ®/ ®, > 1, € is negative. This means that there is a phase
difference of 180° between the transmitted force and the disturbing force (F cosw.f) . The value of
o/ o, must be greater than 2 if is to be less than 1 and it is the numerical value of ¢ , independent of

any phase difference between the forces that may exist which is important. It is therefore more
convenient to use equation (i) in the following form, i.e.

£= ..
(w/mn)2—1 ... (i)

Fig. 23.24 is the graph for different values of damping factor c¢/c, to show the variation of

transmissibility ratio ( ¢ ) against the ratio @/ ®,, .

1. When o/ ®,= ./2 , then all the curves pass through the point & = 1 for all values of
damping factor c/c, .

11
10 l
B ‘
=
9 g
-
2 ‘
8 =
7 \ p
=y
s 1
55 el
B /// B
5
c
©
=

2
1 = |
c |
0 2=107 [
Uz U4 06 U8 T0 T2 T4 16 T8 2

@,

Fig. 23.24. Graph showing the variation of transmissibility ratio.
2. When o/ o, < 2/,_ then ¢ > 1 for all values of damping factor c/c,. This means that the
force transmitted to the foundation through elastic support is greater than the force applied.

3. When o/ ® ,,> 2/,_ then ¢ <1 for all values of damping factor c/c,. This shows that
the force transmitted through elastic support is less than the applied force. Thus vibration isolation

is possible only in the range of ®/ ®,, > N
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We also see from the curves in Fig. 23.24 that the damping is detrimental beyond

®/ ®, > /2 and advantageous only in the region w/ @, < J2 . Tt is thus concluded that for the
vibration isolation, dampers need not to be provided but in order to limit resonance amplitude, stops
may be provided.

Example 23.22. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed
force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the
operating speed; and 3. natural frequency of the system.

Solution. Given m, = 120 kg;m, = 35 kg; r=05mm=35x 10 “m;e=1/11;
N=1500 r.p.m. or ® =2m x 1500/ 60 = 157.1 rad/s ;

1. Stiffness of each spring
Let s = Combined stiffness of the spring in N-m, and

,, = Natural circular frequency of vibration of the machine in rad/s.

We know that transmissibility ratio (g),

1ol @) (@)
I (o5 T &=,  (57.1) =(@,)
|— -1
(#)
or (15712 = (0, )’ = 11(0,)*> of (©,)*=2057 or  ©,=4535 radls

We know that ®y= /s /m

s =my(o,)> =120 x 2057 = 246 840 N /m

Since these are five springs, therefore stiffness of each spring
=246 840/5=49 368 N/m Ans.
2. Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m. or 157.1 rad/s)

We know that maximum unbalanced force on the motor due to armature mass,
F=myo - r=35(157.1" 5 x10* =432 N

Dynamic force transmitted to the base,

1
FregF— x432=3927TN An¢
11

3. Natural frequency of the system
We have calculated above that the natural frequency of the system,

, =45.35 rad/s Ans.
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Example 23.23. 4 machine has a mass of 100 kg and unbalanced reciprocating parts of
mass 2 kg which move through a vertical stroke of 80 mm with simple harmonic motion. The
machine is mounted on four springs, symmetrically arranged with respect to centre of mass, in
such a way that the machine has one degree of freedom and can undergo vertical displacements
only.

Neglecting damping, calculate the combined stiffness of the spring in order that the force
transmitted to the foundation is 1 / 25 th of the applied force, when the speed of rotation of ma-
chine crank shaft is 1000 r.p.m.

When the machine is actually supported on the springs, it is found that the damping reduces
the amplitude of successive free vibrations by 25%. Find : 1. the force transmitted to foundation at
1000 r.p.m., 2. the force transmitted to the foundation at resonance, and 3. the amplitude of the
forced vibration of the machine at resonance.

Solution. Given : m; = 100 kg ; m, =2 kg ; /[ = 80 mm = 008 m ; ¢ = 1/25;
N=1000 r.p.m. or ®=271x1000/60 = 104.7 rad/s

Combined stiffness of springs
Let s = Combined stiffness of springs in N/m, and

®,, = Natural circular frequency of vibration of the machine in rad/s.
We know that transmissibility ratio ( € ),
Ao L @) (o)
) o —(0,)"  (1047)" - (0,)”
-

by
or (104.7)% = (0,)* =25(0,)*  of (w,)>=421.6 orm,=20.5 rad/s

We know that ®, =5 /m

s =mj (o, )> =100 x 421.6 =42 160 N/m Ans.

o

1. Force transmitted to the foundation at 1000 r.p.m.
Let F1=Force transmitted, and

x; = Initial amplitude of vibration.
Since the damping reduces the amplitude of successive free vibrations by 25%, therefore final
amplitude of vibration,

x3=0.75 x1
We know that
() )
log {x_1|: ax2m or loge| nﬂ I ax2mn
e —_—— %
3 Jop)? - U 1) Naie-d°
Squaring both sides,
2,2 2
(0.2877)% = L‘mz or 0.083 = 234
421.6 —a 421.6-d
(1) ]

| logel 5= = loge 1333 =0.2877

35-0.0834% =39.542 or a*=0884 or a=0.94
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We know that damping coefficient or damping force per unit velocity,
c=ax2m; =094 x2x100 =188 N/m/s
and critical damping coefficient,

Co=2m.0,=2 x100 x 20.5 =4100 N/m/s
Actual value of transmissibility ratio,

1+(20.w\|

.o C..0, )
26.0)\2 ( (02 \2
{T 1 w?)

\/ (2 x188x104.7 )2
+

_ ! L4100><20.5 ) N+ 022

_ _
(2188104”]2 0 (104.7)21 J022+629

4100 x 20.5 | 205
S L10% 044
25.08
We know that the maximum unbalanced force on the machine due to reciprocating parts,
F=my.o’r=2(1047)2(0.08/2) =877 N ... (vr=1/2)
Force transmitted to the foundation,
Fr=eF=0.044 x 877 =38.6 N AnS. .ccceecvreuecenes (s e=Fr/F)

2. Force transmitted to the foundation at resonance
Since at resonance, ®= o, , therefore transmissibility ratio,

(2 V 25188 2
1+ = I+~
) 4100 ') _ JI¥ 00084 _, 4,

w2 legﬁ\z 0.092
\/[%)' \/(4100)

and maximum unbalanced force on the machine due to reciprocating parts at resonance speed ®,, ,

F=m (0, )2r = 2(20.5)2(0.08/2) =336 N ...(~r=1/2)
Force transmitted to the foundation at resonance,

Fr=eF=10.92x33.6 =367N Ans.

3. Amplitude of the forced vibration of the machine at
resonance

We know that amplitude of the forced vibration at resonance 367 3
=87x10" m

_ Force transmitted at resonance
Combinedstiffness 42 160

= 8.7 mm Ans.



Chapter 23 : Longitudinal and Transverse Vibrations =

Example 23.24. A single-cylinder engine of total mass 200 kg is to be mounted on an
elastic support which permits vibratory movement in vertical direction only. The mass of the piston
is 3.5 kg and has a vertical reciprocating motion which may be assumed simple harmonic with a
stroke of 150 mm. It is desired that the maximum vibratory force transmitted through the elastic
support to the foundation shall be 600 N when the engine speed is 800 r.p.m. and less than this at
all higher speeds.

1. Find the necessary stiffness of the elastic support, and the amplitude of vibration at 800
r.p.m., and

2. If the engine speed is reduced below 800 r.p.m. at what speed will the transmitted force
again becomes 600 N?
Solution. Given : m,; =200 kg ; m, =3.5kg; /=150 mm = 0.15 mm or » = //2=0.075 m;
Fr=600N ; N=2800r.p.m. or o=2mx800/60  =83.8rad/s
We know that the disturbing force at 800 r.p.m.,
F = Centrifugal force on the piston

=my .00 =35 (83.8)20.075 = 1843 N

1. Stiffness of elastic support and amplitude of vibration
Let s = Stiffness of elastic support in N/m, and
X,q = Max. amplitude of vibration in metres.

Since the max. vibratory force transmitted to the foundation is equal to the force on the elastic
support (neglecting damping), therefore

Max. vibratory force transmitted to the foundation,
F=Force on the elastic support

= Stiffness of elastic support x Max. amplitude of vibration

__F
m[oo2 _(O)n)z]

= =85X
8 X Xpax S

F F.
=5 X [/ ) a\|= ol |— S—|

me 7;J o —s [ (U)n)2='m'J

B 1843x s _ 18435
200 (83.8)° =5 1.4 x10° —s

... (Substituting m = m,)

*  The equation (x) of Art. 23.16 is
F

xmwc
m|(@,7 -]
Since the max. vibratory force transmitted to the foundation through the elastic support decreases at all
higher speeds (i.e. above N = 800 r.p.m. or ® = 83.8 rad/s), therefore we shall use
F

Xmax =

mlo?-(,)]
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or 840 x 10° — 600 s = 1843 s
- s =0.344 x 10° = 344 x 10’ N/m Ans.
and maximum amplitude of vibration,
F 1843 1843
mot—s  200(83.8)2 —344x10° 1056 x10°

Xmax =

=1.745 x 10 m = 1.745 mm Ans.

2. Speed at the which the transmitted force again becomes 600 N

The transmitted force will rise as the speed of the engine falls and passes through reso- nance.
There will be a speed below resonance at which the transmitted force will again equal to

600 N. Let this speed be w rad/s (or N, r.p.m.).

Disturbing force, F =mj (o) )% r=3.5 (07 )? 0.075 = 0.2625 (00, >N

Since the engine speed is reduced below N, = 800 r.p.m., therefore in this case, max, amplitude
of vibration,

F F
X = C o} Lo T r S o —! = o)
max = m(o,)” (o))" 1" m —(o) s—m (o))
L ] ||_; 1 ‘J
, F
and Force transmitted = § X —
s—m(o®r)
- 3 0.2625(w)? 90.3x10° (@)*
600 =344 X0 * : 1 = : 1

3 2 2 2
344%T0° —200(0 ) 344%T0 —200(® )
1 1

... (Substituting m = m,)
206.4 x10° -120 x10% (01 )>=90.3x10% (@;)>  or (w;)> =981
®1=31.32 rad/sor N;=31.32x60/2n =299 r.p.m. Ans.

EXERCISES

1L A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end carries a flywheel
of mass 1 tonne. Taking Young’s modulus for the shaft material as 200 GN/m?, find the natural
frequency of longitudinal and transverse vibrations. [Ans. 200 Hz ; 8.6 Hz]
2 A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end together
with a central load of mass 1000 kg. Calculate the frequency of transverse vibrations. Neglect the
mass of the beam and take /= 10° mm* and £ = 205x10> N/mm>. [Ans. 13.8 Hz]
3 A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m apart and carries a
mass of 200 kg in the middle of the bar. Neglecting the mass of the bar, find the frequency of
transverse vibration.
If an additional mass of 200 kg is distributed uniformly over the length of the shaft, what will be
the frequency of vibration ? Take £ = 200 GN/m?. [Ans. 17.8 Hz ; 14.6 Hz]
4 A shaft 1.5 m long is supported in flexible bearings at the ends and carries two wheels each of 50
kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 0.4 m from
the centre towards right. The shaft is hollow of external diameter 75 mm and inner diameter 37.5
mm. The density of the shaft material is 8000 kg/m>. The Young’s modulus for the shaft material is
200 GN/m?. Find the frequency of transverse vibration. [Ans. 33.2 Hz]
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A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported by two short
bearings, the centre distance of which is 400 mm. Find the whirling speed : 1. neglecting the mass
of the shaft, and 2. taking the mass of the shaft also into consideration. The density of shaft material
is 7500 kg/m’. [Ans. 748 r.p.m.; 744 r.p.m.]
A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It carries three discs of
mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from the left hand. Assuming the mass of
the shaft 190 kg/m, determine the critical speed of the shaft. Young’s modulus for the material of
the shaft is 211 GN/m>. [Ans. 18.8 r.p.m.]
A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is secured to a shaft at
the middle of its length. The span of the shaft between the bearing is 0.5 m. The mass centre of the
disc is 0.5 mm from the axis of the shaft. Neglecting the mass of the shaft and taking £ = 200
GN/m?, find : 1 critical speed of rotation in r.p.m., and 2. the range of speed over which the stress
in the shaft due to bending will not exceed 120 MN/m”. Take the static deflection of the shaft for a
wr
19967 - [Ans. 1450 r.p.m. ; 1184 to 2050 r.p.m.|
A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carries a pulley
of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm from the axis of the
shaft. Find (a) the whirling speed, and () the bending stress in the shaft, when it is rotating at 1700
r.p.m. Neglect the mass of the shaft and £ = 200 GN/m’. [Ans. 3996 r.p.m ; 12.1 MN/m’|
A shaft 12 mm in diameter and 600 mm long between long bearings carries a central mass of 4 kg.
If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute the maximum
flexural stress in the shaft when it is running at 90 per cent of its critical speed. The value of
Young’s modulus of the material of the shaft is 200 GN/m”. [Ans. 14.8 kN/m’|
A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and a dashpot of
damping coefficient of 40 N/m/s. Find (a) damping factor, (b) logarithmic decrement, and (c) ratio
of the two consecutive amplitudes. [Ans. 0.094 ; 0.6 ; 1.82]
A body of mass of 50 kg is supported by an elastic structure of stiffness 10 kN/m. The motion of
the body is controlled by a dashpot such that the amplitude of vibration decreases to one-tenth of its
original value after two complete vibrations. Determine : 1. the damping force at 1 m/s ; 2. the
damping ratio, and 3. the natural frequency of vibration. [Ans. 252 N/m/s ; 0.178 ; 2.214 Hz|
A mass of 85 kg is supported on springs which deflect 18 mm under the weight of the mass. The
vibrations of the mass are constrained to be linear and vertical and are damped by a dashpot which
reduces the amplitude to one quarter of its initial value in two complete oscillations. Find : 1. the
magnitude of the damping force at unit speed, and 2. the periodic time of damped vibration.

[Ans. 435 N/m/s ; 0.27 s]
The mass of a machine is 100 kg. Its vibrations are damped by a viscous dash pot which diminishes
amplitude of vibrations from 40 mm to 10 mm in three complete oscillations. If the machine is
mounted on four springs each of stiffness 25 kN/m, find (@) the resistance of the dash pot at unit
velocity, and (b) the periodic time of the damped vibration. [Ans. 6.92 N/m/s ; 0.2 s|
A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations
is 35 seconds and the ratio of the first and seventh displacement is 2.5. Find (a) the stiffness of the
spring, and (b) the damping resistance in N/m/s. If the oscillations are critically damped, what is the
damping resistance required in N/m/s ? [Ans. 870 N/m ; 3.9 N/m/s ; 162 N/m/s|
A mass of 5 kg is supported by a spring of stiffness 5 kN/m. In addition, the motion of mass is
controlled by a damper whose resistance is proportional to velocity. The amplitude of vibration
reduces to 1/15th of the initial amplitude in four complete cycles. Determine the damping force per
unit velocity and the ratio of the frequencies of the damped and undamped vibrations.

[Ans. 34 N/m/s : 0.994]

A mass of 50 kg suspended from a spring produces a statical deflection of 17 mm and when in
motion it experiences a viscous damping force of value 250 N at a velocity of 0.3 m/s. Calculate the
periodic time of damped vibration. If the mass is then subjected to a periodic disturbing force
having a maximum value of 200 N and making 2 cycles/s, find the amplitude of ultimate motion.

[Ans. 0.262 s ; 8.53 mm]

beam fixed at both ends, i.e. &=
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A mass of 50 kg is supported by an elastic structure of total stiffness 20 kN/m. The damping ratio
of the system is 0.2. A simple harmonic disturbing force acts on the mass and at any time ¢ seconds,
the force is 60 cos 10 ¢ newtons. Find the amplitude of the vibrations and the phase angle caused by
the damping. [Ans. 3.865 mm ; 14.93°]
A machine of mass 100 kg is supported on openings of total stiffness 800 kN/m and has a rotating
unbalanced element which results in a disturbing force of 400 N at a speed of 3000 r.p.m. Assum-
ing the damping ratio as 0.25, determine : 1. the amplitude of vibrations due to unbalance ; and 2.
the transmitted force. [Ans. 0.04 mm ; 35.2 N]
A mass of 500 kg is mounted on supports having a total stiffness of 100 kN/m and which provides
viscous damping, the damping ratio being 0.4. The mass is constrained to move vertically and is
subjected to a vertical disturbing force of the type F cos w t. Determine the frequency at which
resonance will occur and the maximum allowable value of F if the amplitude at resonance is to be
restricted to 5 mm. [Ans. 2.25 Hz ; 400 N]
A machine of mass 75 kg is mounted on springs of stiffness 1200 kN/m and with an assumed
damping factor of 0.2. A piston within the machine of mass 2 kg has a reciprocating motion with a
stroke of 80 mm and a speed of 3000 cycles/min. Assuming the motion to be simple harmonic,
find : 1. the amplitude of motion of the machine, 2. its phase angle with respect to the exciting
force, 3. the force transmitted to the foundation, and 4. the phase angle of transmitted force with
respect to the exciting force. [Ans. 1.254 mm ; 169.05° ; 2132 N ; 44.8°]

DO YOU KNOW?

What are the causes and effects of vibrations ?

Define, in short, free vibrations, forced vibrations and damped vibrations.
Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations.
Derive an expression for the natural frequency of free transverse and longitudinal vibrations by
equilibrium method.

Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations.

Deduce an expression for the natural frequency of free transverse vibrations for a simply supported
shaft carrying uniformly distributed mass of m kg per unit length.

Deduce an expression for the natural frequency of free transverse vibrations for a beam fixed at
both ends and carrying a uniformly distributed mass of m kg per unit length.

Establish an expression for the natural frequency of free transverse vibrations for a simply sup-
ported beam carrying a number of point loads, by (a) Energy method ; and () Dunkerley’s method.
Explain the term ‘whirling speed’ or “critical speed’ of a shaft. Prove that the whirling speed for a
rotating shaft is the same as the frequency of natural transverse vibration.

Derive the differential equation characterising the motion of an oscillation system subject to vis-
cous damping and no periodic external force. Assuming the solution to the
equation, find the frequency of oscillation of the system.

Explain the terms ‘under damping, critical damping’ and ‘over damping’
A thin plate of area A4 and mass m is attached to the end of a spring and is
allowed to oscillate in a viscous fluid, as shown in Fig. 23.25. Show that

m
== 2 2
K= o — (o
y (od)
where the damping force on the plate is equal to pL.4.v; v being the velocity. Fig. 23.25

The symbols ® and ®y indicate the undamped and damped natural circular frequencies of
oscillations.

Explain the term 'Logarithmic decrement' as applied to damped vibrations.

Establish an expression for the amplitude of forced vibrations.

Explain the term ‘dynamic magnifier’.

What do you understand by transmissibility ?
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OBJECTIVE TYPE QUESTIONS

When there is a reduction in amplitude over every cycle of vibration, then the body is said to have
(a) free vibration (b) forced vibration (c) damped vibration
Longitudinal vibrations are said to occur when the particles of a body moves

(a) perpendicular to its axis (b) parallel to its axis

() inacircle about its axis

When a body is subjected to transverse vibrations, the stress induced in a body will be

(a) shear stress (D) tensile stress (c) compressive stress

The natural frequency (in Hz) of free longitudinal vibrations is equal to

(@) 2\m (b)g 5 ©) " J5

(d) any one of these
where m = Mass of the body in kg,
s = Stiffness of the body in N/m, and
& = Static deflection of the body in metres.
The factor which affects the critical speed of a shaft is
(a) diameter of the disc (b) span of the shaft
(c) eccentricity (d) all of these
The equation of motion for a vibrating system with viscous damping is

2
d*x ¢ dx 5  x0
m” dtT m
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If the roots of this equation are real, then the system will be

(a) over damped (b) under damped (c) critically damped
In under damped vibrating system, if x, and x, are the successive values of the amplitude on the same side of the

mean position, then the logarithmic decrement is equal to

(b) log (x/x,) (¢) log, (x,/x;) (d) log (x;.x,)
The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as

(a) x,/x,
(a) damping factor (b) damping coefficient

(¢) logarithmic decrement (d) magnification factor

In vibration isolation system, if ®/ ®, islessthan 2, then for all v@iues of the damping factor, the

transmissibility will be
(a) less than unity (b) equal to unity

(c¢) greater than unity (d) zero where

o = Circular frequency of the system in rad/s, and
®, = Natural circular frequency of vibration of the system in rad/s.

In vibration isolation system, if w/m, > 1, then the phase difference between the transmitted force and the
disturbing force is

(a) 0° (b) 90° (c) 180° (d) 270°
ANSWERS

1. © 2. (b) 3. (b) 4. @ 5. (d)

6. (a) 7. (b) 8. @ 9. (¢) 10. (©)



UNIT-V
GOVERNERS

Introduction

The function of a governor is to regulate the mean speed of an engine, when there are variations in the load
e.g. when the load on an engine increases, its speed decreases, therefore it becomes necessary to increase the supply
of work- ing fluid. On the other hand, when the load on the engine decreases, its speed increases and thus less
working fluid is required. The governor automatically controls the supply of working fluid to the engine with the
varying load conditions and keeps the mean speed within certain limits.

A little consideration will show, that when the load increases, the configuration of the governor changes
and a valve is moved to increase the supply of the working fluid ; conversely, when the load decreases, the engine
speed in- creases and the governor decreases the supply of working fluid.

Note : We have discussed in Chapter 16 (Art. 16.8) that the func- tion of a flywheel in an engine is entirely different from that of
a governor. It controls the speed variation caused by the fluctuations of the engine turning moment during each cycle of

operation. It does not control the speed variations caused by a varying load. The varying demand for power is met by the

governor regulating the supply of working fluid.

Types of Governors
The governors may, broadly, be classified as
1. Centrifugal governors, and

2. Inertia governors.

Centrifugal governars
|

Pendulum type Loaded type
\Walt gavernor [
Dead weigh! governors Spring contralled governars
Porter governar Proell governor
I |
Hartnell governor Hartung governcr Wilson-Harinell governor Pickering governor

Centrifugal Governors

The centrifugal governors are based on the balancing of centrifugal force on the rotating balls by an equal
and opposite radial force, known as the controlling force* It consists of two balls of equal mass, which are
attached to the arms as shown in Fig. 18.1. These balls are known as governor balls or fly balls. The balls

revolve with a spindle, which is driven by the engine through bevel gears. The upper ends of the arms are pivoted to



the spindle, so that the balls may rise up or fall down as they revolve
about the vertical axis. The arms are connected by the links to a sleeve,
which is keyed to the spindle. This sleeve re- volves with the spindle ;
but can slide up and down. The balls and the sleeve rises when the
spindle speed increases, and falls when the speed decreases. In order to
limit the travel of the sleeve in upward and downward directions, two
stops S, S are provided on the spindle. The sleeve is connected by a
bell crank lever to a throttle valve. The supply of the working fluid de-
creases when the sleeve rises and increases when it falls.

When the load on the engine increases, the engine and the
governor speed decreases. This results in the decrease of centrifugal
force on the balls. Hence the balls move inwards and the sleeve moves
down- wards. The downward movement of the sleeve operates a
throttle valve at the other end of the bell crank lever to increase the
supply of working fluid and thus the engine speed is increased. In this
case, the extra power output is provided to balance the increased load.

When the load on the engine decreases, the engine and the governor

speed increases, which results in the increase of centrifugal force on
the balls. Thus the balls move outwards and the sleeve rises upwards. This upward movement of the sleeve reduces

the supply of the working fluid and hence the speed is decreased. In this case, the power output is reduced.

working fluid



Terms Used in Governors

The following terms used in governors are important from the subject point of view ;
1. Height of a governor. 1t is the vertical distance from the centre of the ball to a point where the axes of the arms
(or arms produced) intersect on the spindle axis. It is usually denoted by h.
2. Equilibrium speed. 1t is the speed at which the governor balls, arms etc., are in complete equilibrium and the
sleeve does not tend to move upwards or downwards.
3. Mean equilibrium speed. 1t is the speed at the mean position of the balls or the sleeve.
4. Maximum and minimum equilibrium speeds. The speeds at the maximum and minimum radius of rotation
of the balls, without tending to move either way are known as maximum and mini- mum equilibrium speeds
respectively.

Note : There can be many equilibrium speeds between the mean and the maximum and the mean and the mini- mum equilibrium

speeds

5. Sleeve lift. 1t is the vertical distance which the sleeve travels due to change in equilibrium speed.
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3.4 Gravity Loaded Controlled Governors
(a) Watt Governor

This type of governor is shown in fig-3.1 (a). It is the original form of governor as
used by Watt on some of his early steam engines. In this type of governor, each ball is
attached to an arm, which is pivoted on the axis of rotation. The sleeve is attached to the
governor balls by arms, pin-jointed at both ends, and is free to slide along the govemor
shaft.

The upper arm may be suspended from the vertical spindle in three ways as shown in
fig-3.3.

(i) From the axis of the spindle as shown in fig-3.3 (a).

(iiy  From a point attached to a collar on the spindle so that the arm produced

intersects the spindle as shown in fig-3.3 (b).

(ilit  From a point to a collar so that the arm crosses the spindle as shown in fig
3 3(c).

(b) (c)
Fig-3.3
The height of the governor, which is donated by 'h' in figure, is the distance from the

center of the mass to the point of intersection between the arm and the axis of the spindle,
Let ‘W' be the weight of the ball, 'T' the tension in the arm and 'F' the centrifugal
force when the radius to the center of the ball is ' and the angular velocity of the arm and
the ball about the spindle axis 15 '0".
For the simplified analysis, which follows, the weights of the sleeve, the upper ball
arms, the lower links and friction are all neglected. As the weight of the lower arms and

sleeve is neglected, the tensions in the lower links are negligible and hence only three forces

are acting on each rotating ball.
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(i) The weight 'w' acting vertically downwards

(ii}  The centrifugal force'F = Em 2y acting radially outwards

(iii)  The tension 'T' in the upper arm.
Taking moment about O, the point of intersection of the arm and the axis of the

spindle, for the forces acting on the governor balls, we get

w
2 olrxh=wxr

g
b= ()

The equation (i) shows that neither the weight of the balls nor the length of the
supporting arms has any influence on the height of the govemor. It varies inversely as the
square of the speed.

When 'g'is in cm/s” and 'e' is in radian/s, then 'h' is in cm.

Let 'N' be the speed in rpm, then

2N N
“60 30
o 2008 _900x981 89560
1:2N2 EENZ NZ

Since the height of the governor is inversely proportional to the square of the speed it
15 small at high speeds and at such speeds the change in height comresponding to a small
change in speed is insufficient to enable a govemor of the Watt type to operate the
mechanism to give the necessary change in the fuel supply or steam supply.

From the table given below it can be seen that the height diminishes very rapidly as
the speed of rotation increases.

N (rpm) 40 60 80 100 120 150 220

h (cm) 5598 2488 13.98' 896 622 398 224

Thus, this governor is suitable only for low speeds of rotation not exceeding 75 rpm,
It might then be suggested that a speed reduction gear between engine shaft and the
govémor spindle would allow this governor to be used with higher speed engines. However,

it should be noted that this is not a satisfactory remedy.
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(b) Porter Governor

The type of governor, which is illustrated at fig-3.1 (b), is known as the Porter
governor. The only respect in which it differs from the Watt governor is in the use of a
heavily weighted sleeve. The additional downward force increases the speed of revolution
required to enable the balls to rise to any pre-determined level,

Let 'w' be the weight of each ball and 'W' be the weight of the central load. T, be the
tension in the upper arm and T, the tension in the suspension link. o and B be the
inclinations to the vertical of the upper arm and suspension links respectively. The weight of
arms and weight of suspension links and the effect of friction to the movement of the sleeve
are neglected.

There are several ways of determining the relation between the height 'h' and the
speed 'o'. In this chapter, two methods are used to derive the relation,

(i) Instantaneous Center Method

Consider the equilibrium of the forces acting on the suspension link 'AC', which is
w .
shown in fig-3.4. These forces are 'F, w and T, at C and —Z-and Q at A. The equation

connecting 'F, w and W' is derived by taking moment about L, the point of intersection of the
lines of action of forces Ty and Q. This point of intersection [ is also the instantaneous center
of the link AC. The point I lies at the point of intersection of BC produce and a line drawn
through A perpendicular to the axis of the governor spindle.

Taking moment about I, -

FxCD= waD+¥-{B]+DA)

=wt3na.+}21{tann.+ tan )

o)
Y
o]

={E[l+ ta'“ﬁ]+w.-v]»taa'l-::-.
2 tana
W
:{m‘g—(]-i—khw}mna 2
B Fig-3.4
where k=

tane
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If'h’ be the height of the governor, then tana =%. Further, we have F = ¥ o2

Therefore, we get

W .3 "W r
—_— o] [P 2
= r h2(1+k}+w}h (or)
E(1+Ic)+w
of=| 2—— |8 0
w h

When the length of the arms and the suspension links are of equal length and the axis
of the joints at B and A either intersect the govemor spindle or are at equal distances from
the governor spindle the value 'k' is equal to 1 and the equation (i) reduces to the form

mzz[w;wjﬁ (ii)

When the lengths of the arms are unequal and the axes of the joints at B and A are at
different distances from the governor spindle the k will have a different value for each radius
of rotation of the governor balls, This value of 'k’ can be best found by calculating the value
of o and B. It should be noted that when 'k’ is not equal to 1, its value changes as the height
of the governor changes.

For the simple Watt governor, the weight of the sleeve W 1s negligible and we have

2

either from equation (1) or (ii) the relation &~ = ~§— which has derived earlier. -

(ii))  Equilibrium Method

The govemor sleeve, which is loaded by the weight W is in equilibrium under a
system of three forces, W the load on the sleeve and the tensions T; in the two lowered
suspension links. As the system of forces is in equilibrium, the force triangle drawn for these
forces must be a closed one as shown in fig-3.5 (a).

The pin joint C between the upper arm and the lower suspension link must be in
equilibrium under the action of the four forces as under;

(i) The weight of the ball ‘w'

(i)  Radially outwards acting centrifugal force Fsgmzr

(iii)  Tension Ty in the upper arm
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(iv)  Tension Ty in the lower suspension link.

These four forces must form a closed polygon as shown in fig-3.5 (b).

Fig-3.5

From force triangle for the sleeve, we get

W
2cosp

(iii)

W =2 T;cosf (or) T,

From the polygon of forces on the ball, we have
Ticosae=Trcosp +w (resolving vertically) {iv)
Resolving horizontally,

F =T, sinct+ T3 sinf (v)

From equation (iv)

—+w
s

TI ==
COSCL .
When the value of T; and T are substituted in the equation (v),

W w
F=|-— tana+-——tan
[2+w] 5 B

=[%{]+k}+w]tana (v)
tan f3 _

tano

where k=

By substituting the value of tanc. and F, equation (i), which is denived earlier, can be

done.



(c) Proell Governor
Fig-3.1(c) shows a type of Proell governor. This governor is similar to the Porter governor
except that the revolving balls are atiached to the extensions of the lower links. This has the
effect of reducing the change of speed necessary for a given sleeve movement. In other
words the governor is made more sensitive.

The action of this governor is again similar to that of the other governors described
earlier. The analysis of the Proell governor can be done by considering the equilibrium of
the lower arm, which is referred fig-3.8. &

I D Cl
Fig-3.8 W R
2
There are five forces acting on the lower link:
(1) The centrifugal force F, acting radially outwards, through the center of the
gravity of the ball
(i)  The weight ‘W', acting vertically downwards through the center of gravity of
the ball

(i)  The pull % at C acting vertically downwards

(iv)  The tension T; along the length of the link AB

(v)  Reaction at C along a line at right angles to the axis of the governor spindle.

The instantaneous center of the lower suspension link BC lies at the point of
intersection of AB produced and a line drawn through C perpendicular to the axis of the
governor spindle. It is assumed that the extension BG of the lower suspension link BC is

vertical for the given configuration.
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Take moment about I, the instantaneous center of the lower suspension link. The

tension Ty and the reaction at C give no moment. Therefore,
FxDG=wxﬂ3+“—;’-x{]D+DC] (1)

Dividing both sides by BD,

DG D W[ID DC}
=W X——t —

Fx——=w —
BD ED 2[BD BD

= wtana+¥{tana+tani3]

.‘.F:.@{[w+ﬂ}aﬁa+—w—-mﬂ} (ii)

DG 2 2

Let b =k

tan-o
F=E{E(l+k}+w}hm& i)

DG | 2

But, fane=—  and F=" o (iv)
h g

Substituting the values given by equation (iv) in equation (iii},

w 2 BD|W }r
— =3 —({1+k}+wr—
g " DG{E( i

W
—(l+k)+w i
mz =§KE].J_. _2—_ {1..-]
h DG w

Thus, the effect of placing the ball at G, instead of at the pin joint B is to reduce the
equilibrium speed for given values of the height of the governor, the weight of the ball and
the weight of the sleeve. Hence in order to give the same equilibrium speed for the given
height and the weight of the sleeve, the smaller ball is required in Proell govemor than that

in Porter governor.
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3.5 Spring Loaded Controlled Governors
In spring loaded controlled govemors the control of speed is affected either wholly or in part
by means of springs. Some of the representative of spring loaded controlled governors are
shown in fig-3.2.
The spring loaded controlled governors posses the following advantages over the
gravity loaded controlled governors.
(1) The spring lcaded controlled governors may be operated at very high speeds.
(i)  With proper proportioning the spring loaded controlled governors can be
made both powerful and capable of very closed regulation.
(iii) It can be much smaller in over all size.
(iv)  As it does not depend on gravity for its action, it may revolve about a
horizontal, vertical or inclined axis.
In spring loaded controlled governors the spring may be placed upon the axis of

rotation or they may be transverse as shown in fig-3.2.

(a) Spring loaded Controlled Governor of the Harmell Type

Fig-3.10
Fig-3.10 shows spring loaded controlled governor of Hartnell type. Two bell crank levers L
are mounted on pins L carried by the frame A, which is attached to the rotating spindle S.

Each lever carries a ball B at the end of one arm and a roller R the end of the other. The

centrifugal forces of the balls cause the rollers R to press against the collar C on the sleeve
E. The upward pressure of the rollers on the collar of the sleeve 1s balanced by the
downward thrust of the helical spring, which is in compression. The angle of the bell crank

lever is usually 90° but in practice it may be grater.
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Let w be the weight of each ball, S the spring force exerted on the sleeve, k the
stiffness of the spring, o the speed of rotation, r the radius of rotation, a and b the lengths of
the vertical and horizontal arms of the bell crank lever and F the centrifugal force on the
ball.

By taking moment about the fulcrum of the lever, neglecting the effect of pull of

gravity on the governor balls and arms,

Fxa =§xb
2
a
5=2F— i
or b (i)

It is assumed that the arms are mutually perpendicular and the lines of action of
forces are at right angles to the arm.
Let the suffixes 1 and 2 denote the values of maximum and minimum radii
respectively. Then at maximum radius
a .
S, =2F— 11
1 B (1)

At minimum radius, S, =2Fz~:— (iii)

e 51 "'Sz = 2%(1:"1 *—Fz)

Let 8 be the angular movement of the bell crank lever from the position of minimum

radius to the position of the maximum radius, then

(rn—r)=ab (iv)
If h be the lift of the sleeve, then
h=b8 v)
Dividing equation (¥) by (iv),
i =-|?— (or)
r,—r, a
h=2( 1) (vi)
a

The difference in the forces exerted by the compressed spring in the two positions is
S, — S;; therefore, the force per unit compression is known as the stiffness of the spring. The

stiffness of the spring is denoted by k.






