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SYLLABUS 
L  T  P 
2  2   - 
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DYNAMICS OF MACHINES 
Pre-requisite: Engineering Mechanics and Kinematics of Machinery 
Objectives: The objective of this subject is to know static and dynamic behavior of mechanisms 
under different loading conditions. 
MODULE – I: Precession         [8 Periods] 
Precession: Gyroscopes, effect of precession motion on the stability of moving vehicles such as motor car, motor 
cycle, aero planes and ships. 
MODULE–II: Static and Dynamic Force Analysis of Planar Mechanisms & Synthesis of Linkages  

          [14 Periods] 
A: Static And Dynamic Force Analysis Of Planar Mechanisms: Introduction -Free Body Diagrams – Conditions 
for equilibrium – Two, Three and Four Members – Inertia forces and D‘Alembert‘s Principle – planar rotation 
about a fixed centre. 
B: Synthesis Of Linkages: Three position synthesis – Four position Synthesis – Precision positions – Structural 
error – Chebychev‘s spacing, Freudentein‘s equation, Problems. 
MODULE - III: Clutches & Turning Moment Diagram and Fly Wheels    [14 Periods] 
A: Clutches: Friction clutches- Single Disc or plate clutch, Multiple Disc Clutch, Cone Clutch, Centrifugal 
Clutch. Brakes and Dynamometers: Simple block brakes, internal expanding brake, band brake of vehicle. 
Dynamometers – absorption and transmission types. General description and methods of operations. 
B: Turning Moment Diagram and Fly Wheels: Turning moment – Inertia Torque connecting rod angular velocity 
and acceleration, crank effort and torque diagrams – Fluctuation of energy – Fly wheels and their design. 
MODULE - IV: Balancing & Vibration        [14 Periods] 
A: Balancing: Balancing of rotating masses Single and multiple – single and different planes. Balancing of 
Reciprocating Masses- Primary, Secondary, and higher balancing of reciprocating masses. Analytical and 
graphical methods.Unbalanced forces and couples – examination of –‘V’ multi cylinder in line and radial engines 
for primary and secondary balancing, locomotive balancing. 
B: Vibration: Free Vibration of mass attached to vertical spring – Simple problems on forced damped vibration, 
Vibration Isolation & Transmissibility Whirling of shafts, critical speeds, torsional vibrations, two and three rotor 
systems. 
MODULE - V: Governers         [10 Periods] 
Governers: Watt, Porter and Proell governors. Spring loaded governors – Hartnell and hartung with auxili ary 
springs. Sensitiveness, isochronism and hunting. 

 
TEXT BOOKS : 

1. Theory of Machines / S.S Ratan/ Mc. Graw Hill Publ. 

2. Theory of Machines / Jagadish Lal & J.M.Shah / Metropolitan. 

REFERENCES: 

1. Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age 
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2. Theory of Machines / Shiegly / MGH 

3. Theory of Machines / Thomas Bevan / CBS Publishers 

4. Theory of machines / Khurmi/S.Chand. 
 
 
COURSE OUTCOME: 

1. After completion of the course, students will be able to: 
2. Understand the concept of gyroscope and understand and analyze the effect of precision on different types of 

vehicles. 
3. Learn the concept of free body diagram, preparing of free body diagram and can do the analysis of members which 

are subjected to different types of forces and do the synthesis of linkages. 
4. Learn the concepts of clutches, brakes and dynamometers and able to analyze various types of clutches, brakes, 

dynamometers and learn the concept of turning moment diagram and its analysis for various types of engines and 
design the flywheels. 

5. Know various types of forces that are acting on the rotating masses and necessity of balancing and balancing of 
various types of engines and their analysis and learn the concept of vibrations and get depth knowledge about 
different types of vibrations. 

6. Learn the concept of governors and analyze various types of governors and get familiar with various terms associated 
with governors. 
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                                                                                              MODULE-1 
 
 

PRECESSION 

Introduction 

‘Gyre’ is a Greek word, meaning ‘circular motion’ and Gyration means the whirling motion. A 

gyroscope is a spatial mechanism which is generally employed for the study of precessional 

motion of a rotary body. Gyroscope finds applications in gyrocompass, used in aircraft, naval  

ship, control system of missiles and space shuttle. The gyroscopic effect is also felt on the 

automotive vehicles while negotiating a turn. 

A gyroscope consists of a rotor mounted in the inner gimbal. The inner gimbal  is  

mounted in the outer gimbal which itself is mounted on a fixed frame as shown in Fig.. When the 

rotor spins about X-axis with angular velocity ω rad/s and the inner gimbal precesses (rotates) 

about Y-axis, the spatial mechanism is forced to turn about Z-axis other than its own axis of 

rotation, and the gyroscopic effect is thus setup. The resistance to this motion is  called  

gyroscopic effect. 

 
 

ANGULAR MOTION 
 

A rigid body, (Fig.) spinning at a constant angular velocity ω rad/s about a spin axis 

through the mass centre. The angular momentum ‘H’ of the spinning body is represented by a 

vector whose magnitude is ‘Iω’. I represents the  mass amount of inertia of the rotor about the  

axis of spin. 
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The direction of the angular momentum can be found from the right hand screw rule or   

the right hand thumb rule. Accordingly, if the fingers of the right hand are bent in the direction of 

rotation of rotor, then the thumb indicates the direction of momentum. 

 
 

GYROSCOPIC COUPLE 
 

Consider a rotary body of mass m having radius of gyration k mounted on the shaft 

supported at two bearings. Let the rotor spins (rotates) about X-axis with constant  angular 

velocity  rad/s. The X-axis is, therefore, called spin axis, Y-axis, precession axis and Z-axis, the 

couple or torque axis (Fig.). 

 

The angular momentum of the rotating mass is given by, 
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H = mk2  = I

Now, suppose the shaft axis (X-axis) precesses through a small angle  about Y-axis in 

the plane XOZ, then the angular momentum varies from H to H + H, where H is the change in 

the angular momentum, represented by vector ab  [Figure 15.2(b)].  For the small value of angle  

of rotation 50, we can write 

However, the rate of change of angular momentum is: 

 
 

C = Ip 

 
Direction of Spin vector, Precession vector and Couple/Torque vector with 

forced precession 

To determine the direction of spin, precession and torque/couple vector, right hand screw 

rule or right hand rule is used. The fingers represent the rotation of the disc and the thumb shows 

the direction of the spin, precession and torque vector (Fig.). 
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The method of determining the direction of couple/torque vector is as follows 
 

Case (i): 

Consider a rotor rotating in anticlockwise direction when seen from the right (Fig.5 and 

Fig. 6), and to precess the spin axis about precession axis in clockwise and anticlockwise  

direction when seen from top. Then, to determine the active/reactive gyroscopic couple vector,  

the following procedure is used. 

 Turn the spin vector through 900 in the direction of precession on the XOZ plane 
 The turned spin vector will then correspond to the direction of active gyroscopic 

couple/torque vector 
 The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector 

direction 
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Case (ii): 

Consider a rotor rotating in clockwise direction when seen from the right (Fig.7 and Fig. 8), and  

to precess the spin axis about precession axis in clockwise and anticlockwise direction when seen 

from top. Then, to determine the active/reactive gyroscopic couple vector, 

 Turn the spin vector through 900 in the direction of precession on the XOZ plane 

 The turned spin vector will then correspond to the direction of active gyroscopic 

couple/torque vector 

 The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector 

direction 
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The resisting couple/ reactive couple will act in the direction opposite to that of the gyroscopic 

couple. This means that, whenever the axis of spin changes its direction, a gyroscopic couple is 

applied to it through the bearing which supports the spinning axis. 

 
 

GYROSCOPIC EFFECT ON SHIP 

Gyroscope is used for stabilization and directional control of a ship sailing in the rough 

sea. A ship, while navigating in the rough sea, may experience the following three different types 

of motion: 

(i) Steering—The turning of ship in a curve while moving forward 

(ii)  Pitching—The movement of the ship up and down from horizontal position in a 

vertical plane about transverse axis 

(iii) Rolling—Sideway motion of the ship about longitudinal axis 

For stabilization of a ship against any of the above motion, the major requirement is that 

the gyroscope shall be made to precess in such a way that reaction couple exerted by the rotor 

opposes the disturbing couple which may act on the frame. 

Ship Terminology 

(i) Bow – It is the fore end of ship 

(ii) Stern – It is the rear end of ship 

(iii) Starboard – It is the right hand side of the ship looking in the direction of motion 

(iv) Port – It is the left hand side of the ship looking in the direction of motion 
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Consider a gyro-rotor mounted on the ship along longitudinal axis (X-axis) as shown in 

Fig.10 and rotate in clockwise direction when viewed from rear end of the ship. The  angular 

speed of the rotor is  rad/s. The direction of angular momentum vector oa, based on direction of 

rotation of rotor, is decided using right hand thumb rule as discussed earlier. The gyroscopic  

effect during the three types of motion of ship is discussed. 

Gyroscopic effect on Steering of ship 

(i) Left turn with clockwise rotor 

When ship takes a left turn and the rotor rotates in clockwise direction viewed from 

stern, the gyroscopic couple act on the ship is analyzed in the following way. 
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Note that, always reactive gyroscopic couple is considered for analysis. From the above 

analysis (Fig.), the couple acts over the ship between stern and bow.  This  reaction  couple tends 

to raise the front end (bow) and lower the rear end (stern) of the ship. 

 
(ii) Right turn with clockwise rotor 

When ship takes a right turn and the rotor rotates in clockwise direction viewed from 

stern, the gyroscopic couple acts on the ship is analyzed (Fig 14). Again, the couple acts in  

vertical plane, means between stern and bow. Now the reaction couple tends to lower the bow of 

the ship and raise the stern. 
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(iii) Left turn with anticlockwise rotor 

When ship takes a left turn and the rotor rotates in anticlockwise direction viewed from 

stern, the gyroscopic couple act on the ship is analyzed in the following way (Fig.). 

 
 

 

The couple acts over the ship is between stern and bow. This reaction couple tends to  

press or dip the front end (bow) and raise the rear end (stern) of the ship. 
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(iv) Right turn with anticlockwise rotor 

When ship takes a right turn and the rotor rotates in anticlockwise direction viewed 

from stern, the gyroscopic couple act on the ship is according to Fig 20. Now, the reaction couple 

tends to raise the bow of the ship and dip the stern 
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Gyroscopic effect on Pitching of ship 

The pitching motion of a ship generally occurs due to waves which can be approximated  

as sine wave. During pitching, the ship moves up and down from the horizontal position  in 

vertical plane (Fig. ) 

 
 

 
Consider a rotor mounted along the longitudinal axis and rotates in clockwise direction 

when seen from the rear end of the ship. The direction of momentum for this condition is shown 

by vector ox (Fig.24). When the ship moves up the horizontal position in vertical plane by an 
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angle   from the axis of spin, the rotor axis (X-axis) processes about Z- axis in XY-plane and  

for this case Z-axis becomes precession axis. The gyroscopic couple acts in anticlockwise 

direction about Y-axis and the reaction couple acts in opposite direction, i.e. in clockwise 

direction, which tends to move towards right side (Fig.25). However,  when the ship pitches  

down the axis of spin, the direction of reaction couple is reversed and the ship turns towards left 

side (Fig.) 

 
 
 
 

.  
 
 

Similarly, for the anticlockwise direction of the rotor viewed from the rear end (Stern) of 

the ship, the analysis may be done. 
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Gyroscopic effect on Rolling of ship. 

The axis of the rotor of a ship is mounted along the longitudinal axis of ship  and  

therefore, there is no precession of this axis. Thus, no effect of gyroscopic couple on the ship 

frame is formed when the ship rolls 

 
Gyroscopic Effect on Aeroplane 

Aeroplanes are subjected to gyroscopic effect when it taking off, landing and negotiating 

left or right turn in the air. 

Let 

ω = Angular velocity of the engine rotating parts in rad/s, 

m = Mass of the engine and propeller in kg, 

rW = Radius of gyration in m, 

I = Mass moment of inertia of engine and propeller in kg m2, 

V = Linear velocity of the aeroplane in m/s, 

R = Radius of curvature in m, 

ωp =Angular velocity of precession =v/R rad/s 

Gyroscopic couple acting on the aero plane = C = I  p 

 

Let us analyze the effect of gyroscopic couple acting on the body of the aero plane for 

various conditions. 

 
Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end 

and Aeroplane turns towards LEFT 
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According to the analysis, the reactive  gyroscopic couple tends to dip the tail and raise  

the nose of aeroplane. 

 

Case (ii): PROPELLER rotates in CLOCKWISE direction when seen from rear  

end and Aeroplane turns towards RIGHT 
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According to the analysis, the reactive  gyroscopic couple tends to raise the tail and dip  

the nose of aeroplane. 

 

Case (iii): PROPELLER rotates in ANTICLOCKWISE direction when seen from 

rear end and Aeroplane turns towards LEFT 
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The analysis indicates, the reactive gyroscopic couple tends to raise the tail and dip the 

nose of aeroplane. 

 

Case (iv): PROPELLER rotates in ANTICLOCKWISE direction when seen 

from rear end and Aeroplane turns towards RIGHT 
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The analysis shows, the reactive gyroscopic couple tends to raise the tail and dip the nose of 

aeroplane. 
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Case (v): PROPELLER rotates in CLOCKWISE direction when seen from 

rear end and Aeroplane takes off or nose move upwards 
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The analysis show, the reactive gyroscopic couple tends to turn the nose  of aeroplane toward  

right 

 

Case (vi): PROPELLER rotates in CLOCKWISE direction when seen from rear  

end and Aeroplane is landing or nose move downwards 
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The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
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Case (vii): PROPELLER rotates in ANTICLOCKWISE direction when seen from 

rear end and Aeroplane takes off or nose move upwards 

 

The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
 
 



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS)  Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday 
kumar  

 
 

Case (viii): PROPELLER rotates in ANTICLOCKWISE direction when seen from 

rear end and Aeroplane is landing or nose move downwards 

 

 

The analysis show, the reactive gyroscopic couple tends to turn the nose  of aeroplane toward  

right 
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Stability of Automotive Vehicle 

A vehicle running on the road is said to be stable when no wheel is supposed to leave the 

road surface. In other words, the resultant reactions by the road surface on wheels should act in 

upward direction. For a moving vehicle, one of the reaction is due to gyroscopic couple produced 

by the rotating wheels and rotating parts of the engine. Let us discuss stability of two and four 

wheeled vehicles when negotiating a curve/turn. 

 

Stability of Two Wheeler negotiating a turn 
 

Fig shows a two wheeler vehicle taking left turn over a curved path. The vehicle is 

inclined to the vertical for equilibrium by an angle  known as angle of heel. 

 
Let 

m = Mass of the vehicle and its rider in kg, 

W = Weight of the vehicle and its rider in newtons = m.g,   

h = Height of the centre of gravity of the vehicle and rider, 

rW = Radius of the wheels, 

R = Radius of track or curvature, 

IW = Mass moment of inertia of each wheel, 

IE = Mass moment of inertia of the rotating parts of the engine, 

ωW = Angular velocity of the wheels, 

ωE = Angular velocity of the engine rotating parts, 

G = Gear ratio = ωE / ωW, 
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v = Linear velocity of the vehicle = ωW × rW, 

θ = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium 
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Let us consider the effect of the gyroscopic couple and centrifugal couple on the wheels. 
 
 

1. Effect of Gyroscopic Couple 

We know that, V = ωW × rW 

ωE  = G .ωW or 

Angular momentum due to wheels = 2 Iw ωW 

Angular momentum due to engine and transmission = IE ωE 

Total angular momentum (I xω) = 2 Iw  ωW  IE ωE 

 
 

 

Velocity of precession = ωp 

It is observed that, when the wheels move over the curved path, the vehicle is always 

inclined at an angle θ with the vertical plane as shown in Fig… This angle is known as ‘angle of 

heel’. In other words, the axis of spin is inclined to the horizontal at an angle θ , as shown in 

Fig.73 Thus, the angular momentum vector I ω due to spin is represented by OA inclined to OX  

at an angle θ. But, the precession axis is in vertical. Therefore, the spin vector is resolved along OX. 

 
Gyroscopic Couple, 

 
 

 

Note:  When the engine is rotating in the same direction as that of wheels, then the positive sign   

is used in the above equation. However, if the engine rotates in opposite direction to wheels, then 

negative sign is used. 
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The gyroscopic couple will act over the vehicle outwards i.e., in the anticlockwise 

direction when seen from the front of the two wheeler. This couple tends to overturn/topple the 

vehicle in the outward direction as shown in Fig… 
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2. Effect of Centrifugal Couple 
 
 

 

Centrifugal force, 
 
 

Centrifugal Couple 
 
 
 
 
 
 

The Centrifugal couple will act over the two wheeler outwards i.e., in the anticlockwise 

direction when seen from the front of the two wheeler. This couple tends to overturn/topple the 

vehicle in the outward direction as shown in Fig. 

 
Therefore, the total Over turning couple: C = Cg + Cc 
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For the vehicle to be in equilibrium, overturning couple should be equal to balancing 

couple acting in clockwise direction due to the weight of the vehicle and rider. 

C = mgh sin



For the stability, overturning couple must be equal to balancing couple, 
 

Therefore, from the above equation, the value of angle of heel (θ) may be determined, so that the 

vehicle does not skid. Also, for the given value of θ, the maximum vehicle speed in the turn with 

out skid may be determined. 
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Stability of Four Wheeled Vehicle negotiating a turn. 
 

 
Consider a four wheels automotive vehicle as shown in Figure 82. The engine is mounted 

at the rear with its crank shaft parallel to the rear axle. The centre of gravity of the vehicle lies 

vertically above the ground where total weight of the vehicle is assumed to be acted upon. 

 
Let 

m = Mass of the vehicle (kg) 

W = Weight of the vehicle (N) = m.g, 

h = Height of the centre of gravity of the vehicle (m) 

rW = Radius of the wheels (m) 

R = Radius of track or curvature (m) 

IW = Mass moment of inertia of each wheel (kg-m2) 

IE = Mass moment of inertia of the rotating parts of the engine (kg-m2) 

ωW = Angular velocity of the wheels (rad/s) 

ωE = Angular velocity of the engine (rad/s) 

G = Gear ratio = ωE / ωW, 

v = Linear velocity of the vehicle (m/s)= ωW × rW, 

x = Wheel track (m) 

b = Wheel base (m) 



MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS)  Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday 
kumar  

 

 

 
 
 
 
 

(i) Reaction due to weight of Vehicle 

Weight of the vehicle. Assuming that weight of the vehicle (mg) is equally distributed over four 

wheels. Therefore, the force on each wheel acting downward is mg/4 and the reaction by the road 

surface on the wheel acts in upward direction. 

 
 
 

(ii) Effect of Gyroscopic couple due to Wheel 

Gyroscopic couple due to four wheels is, 

Cw = 4 Iwp 

(iii) Effect of Gyroscopic Couple due to Engine 

Gyroscopic couple due to rotating parts of the engine 

CE = IE  p = IE G  p 
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Therefore, Total gyroscopic couple: 

Cg = Cw  + CE=  p (4IW  ± IEG) 

When the wheels and rotating parts of the engine rotate in the same direction,  then 

positive sign is used in the above equation. Otherwise negative sign should be considered. 

Assuming that the vehicle takes a left turn, the reaction gyroscopic couple on the vehicle 

acts between outer and inner wheels. 

 
 
 

This gyroscopic couple tends to press the outer wheels and lift the inner wheels 
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Due to the reactive gyroscopic couple, vertical reactions on the road surface will be 

produced. The reaction will be vertically upwords on the outer wheels and vertically downwords 

on the inner wheels. Let the magnitude of this reaction at the two outer and inner wheels be P 

Newtons, then, 

P x X = Cg 
 

Road reaction on each outer/Inner wheel, 

 
 

(iii)Effect of Centrifugal Couple 

When a vehicle moves on a curved path, a centrifugal force acts on the vehicle in outward 

direction through the centre of gravity of the vehicle( Fig…) 
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Centrifugal force, 

 

This force forms a Centrifugal couple. 

 

This centrifugal couple tends to press the outer and lift the inner 
 

Due to the centrifugal couple, vertical reactions on the road surface will be produced. The 

reaction will be vertically upwords on the outer wheels and vertically downwords on the inner 

wheels. Let the magnitude of this reaction at the two outer and inner wheels be F Newtons, then, 

 
 
 

Road reaction on each outer/Inner wheel, 
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The reactions on the outer/inner wheels are as follows, 

 

Total vertical reaction at each outer wheels 
 
 

Total vertical reaction at each inner wheels 
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MODULE-II 

 
 

Static and Dynamic Force Analysis of Mechanisms 

Mechanisms are designed to carry out certain desired work, by producing the 

specified motion of certain  output  member. It  is usually  required  to find the force or 
• torque to be applied on an input member. when one or more forces act on certain output 

member(s). The external force may be constant or varying through the whole cycle of motion. 
Calculation of input force or torque over the complete cycle will. be needed to determine the 
power requirement. then the masses and moments of inertia of the members are negliglble, 
static force analysis may be carried out. Otherwise, particularly at high speeds, significant 
forces or torques will be required to produce linear or angular accelerations of the various 
members. The same will have to be considered in the analysis. It is .also required to find the 
forces at the )oTnts for proper design. These also vary depending upon the 
position/configuration in the cycle. 

Static analysis is carried out by the usual methods of colllnearity of forces. equlTfbrium of 
forces / moments. Input is determined as that force or moment to bring the system’ to’ equilibrium. In the case 
of dynamic systems, linear acceleration of each link (CG) and the angular accelerations of the members are 
evaluated. The corresponding forces and moments are calculated (product of acceleration and inertia). 

D’Alembert’s principle is a method of applying fictitious forces / torques called inertia force / 
torque, equal and opposite to the force or torque required to produce acceleration in each member, so as to 
produce a static” condition which is called dynamic equilibrium. Then the system can be treated as static, 
which permits application af techniques of static force analysis. 

Dyriamlc force analysis is the evaluation of input forces or torques and joint forces considering 
motion of members. Evaluation of the inertia force /torque are explained first. Methods of static force 
analysis are explained. 

Dynamic Force Analysis: 

Consider the four-bar chain ABCD (fig.1a). Let the joint A be acted upon by a Torque T so as ’to move the 
link AB at ao .angular velocity of w. Let the masses of the links AB, BC and CD be m„ mz and mm, and 
moments of inertia be I , I„ and I›. 

1. Draw the velocity {fig 1.b) and 
acceleration diagram (fig 1.c) of the mechanism 

ii. Determine linear accelerations of the CGs of the links, and 
angular accelerations of links BC and CD. 
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iii. Consider link BC. Let the CG be at point G. (fig. 1.d) Force 

on the link due to acceleration dg is* *2 M@ X 0 

Hence lnertia force - -fz 
. Angular acceleration = a› = a’› / BC; 

Torque t It x « ( ) 
Inertia torque -tm (cw) 

 
iv. Combine the inertia force and torque into a single force P, parallel to it, but acting at 

distance h = IQ m a2 Ite m the point G. (Fig.J.d)(Verify) 
v. This force equivalently replaces the inertia force and torque. 
vi. Repeat the procedure for link CD. (fig.1.e) 

vii. For link AB, as there is no angular acceleration, inertia force is taken to act opposite to 1xa . 
(If it has finite angular acceleration. given as input, it can be handled as for other links) 

viii. Thus, the mechanism will be in equilibrium under the action of the forces acting on links 2 
and 3 and the input torque. It is then a static system. 

The torque on the crank is calculated by any of the methods of static force analysis, some of 
which are explained below .0 eT• 
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Static Force Analysts: 

This can be done by obtaining the free body
and collinearity of forces, as appropriate.

' graphical-analytical methods or vectorial 
of force resolution and (c) Method of superposition.

Consider a Mbar chain. Forces F , (2. F› act on 
points shown: It is desired to find the torque
forces) to keep the mechanism in equilibrium.

 
A.Principle of Virtual Work: In this method. 
infinitesimal motions, is taken as zero. It is

                             the reactions at. the joints get nullified and 
procedure is adapted: 

 
a. Draw a velocity diagram of 

which the turning moment 
Actual velocities are w times those 

b. Find the velocity of the link
 

c. Measure the component of
1. Vz, V, are aloag F1. F,., 

d. Work done by the force = force 
the direction of the force. 

e. T x u + F‹xVi x w + FzxVz 
f. Find T. 
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body diagrams (f.b.d.) for each link, application of equilibrium of
appropriate. Either 

vectorial approach can be adapted. \Ve review (a) Prindple of Virtual 
superposition. {be may also em ploy equivalent vectorlal methods

on links 1., 3 and 3 at the 
torque T on link 1, (and joint 

equilibrium. 

method. total work done by forces and moment acting on the system
is to be noted that 

 are workfess. As such the joint forces cannot be evaluated in this

of the linkage assuming unit angular velocity of the
moment is applied {fig.a.i). 

those drawn. 

link at the point .of application of the external force.

of the velocity along the direction of the force applied.
,., F› respy. (fig.a.2) 

force x velocity in 

FzxVz w + F›xV›x w = 0. 

MALL REDDY ENGINEERING COLLEGE (AUTONOMOUS)  Notes Preapered By Mr.E.venkata Reddy/Mr.S.Uday 

of forces or moments 

Virtual Work (b) method 
methods — see JE Shigley ). 

system causing 

this method. Following 

the link AB on 

force. 

applied. 
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8 : Bv Resoluion of Forces: 
Start with ’link 3. 
-From the fbd of link 3, let the force fr be resolved into two components, one along Link 3 and other 
perpendicular. (fig.b.I) 

• -Take moments about D, which gives fz›’ Link 2 
-Fz and F32' .being known, taking moments about B, find f3›°. (fig.b.2) 
-From polygon of forces, find for (f g.b.3) 
-F/ and f23 components being known, force polygon. gives fi,. (fig.b.4). Link \ 
From the polygon of forces on link i, find f< . Sko 
Teking moments about A, (fig.b.5), find T from the eqn. 

 
 

(C) Method of Superposition 

In this method we assume that only F is present (Fm, F› -0) and find moment M . Then assume Ft alone is present, and evaluate 

M’, similarly M* when only Fm is present. The moment on member \ Is the su.m of the moments M 1, M°. M*. ie., the effect of each 
force is superposed to get the condition when all forces act at the same time. 

fa) Effect of .F1 alone (fig.c.i): Start wlth the fbd for link 1 - links 2 and 3 are 2-force 
members, and joint forces are along the members. However, at joint C, force f‹, and f›, act 
along the respective members 2 and 3, but have to be: equal and opposite. ” It is possible only 
fzz=f›z=0. Hence, f2 f= fn) and f,‹(= ft3t    I! all be zero. 

T+ F,xa + f‹,xb. =O 

(b.L) 
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Fi and f‹ are equal and opposite. The moment F,xa is balanced by M’. (M’ + F xa =0) 

(b) F alone acting: From the fbd of link2- Forces Fz, ! 32 (along link 3. beirtg 2-force member) 
are collinear, which determines the direction of t2 fi c Now complete the force polygon to 
determine the magnitudes of f,2 and /›2 as well. (fig.c.3). Also, f›3=f•• 

On link 1. /4› and fm are equal and opposite, and balanced by M* given by M’ + f„xb =0. 

@ Force F3 on Link 3 alone (Fie. : Consider fbd of link  3. F3. f2› and f»  are collinear. from which  
directions  ol  ftt and f„  are known. Their  magnitudes  are known  from force P !Y8 • /32 ( f„) are 
the forces acting on link 2. 

Forces on link 1 are t2 and f4 . are equal and opposite (Fig.c.@, and their couple is balanced by 
M*(= fmmxc). 
The turning moment required under the simultaneous action of all forces is 
T= M + M› + M’ 

 
Note: Each joint force is similarly obtained by superimposing the particular joint force 

Obtained in the 3 cases. 
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DYNAMIC FORCE ANALYSIS: 
 

It is defined as the study of the force at the pin and guiding surfaces and the forces 
causing stresses in machine parts, such forces being the result of forces due to the 
motion of each part in the machine. The forces include both external and inertia 
forces. Inertia forces in high speed machines become very large and cannot be 
neglected, Ex: Inertia force of the piston of an automobile travelling at high speed 
might be thousand times the weight of the piston. The dynamic forces are 
associated with accelerating masses. 

 
If each link, with its inertia force and force applied to the link can be considered 
to be in equilibrium, the entire system can also be considered to be in equilibrium. 

 
Determination of force & couple of a link 

(Resultant effect of a system of forces acting on a rigid body) 
 
 

G = c .g point 
F1& F2: equal and opposite forces 
acting through G (Parallel to F) 

 
F: Resultant of all the forces acting 
on the rigid body. 
h: perpendicular distance between F 
& G. 
m = mass of the rigid body 

 
Note: F1=F2 & opposite in direction; they can be cancelled with out affecting the 
equilibrium  of  the  link.    Thus,  a  single  force  „F‟  whose  line  of  action  is  not 
through G, is capable of producing both linear & angular acceleration of CG of 
link. 

 
F and F2 form a couple. 

 
T= F x h = I  = mk2 α (Causes angular acceleration) .............. (1) 

 
Also, F1 produces linear acceleration, f. 

 
F1= mf 

 
Using 1 & 2, the values of „f‟ and „α‟ can be found out if F1, m, k & h are known. 

F2 

. h 

G F 

m 

F1 



5 

2 
 

 

 

D’Alembert’s principle: 

Final design takes into consideration the combined effect of both static and 
dynamic force systems.  D‟Alembert‟s principle provides a method of converting 
dynamics problem into a static problem. 

 
Statement: 

The vector sum of all external forces and inertia forces acting upon a rigid body is 
zero. The vector sum of all external moments and the inertia torque, acting upon 
the rigid body is also separately zero. 

 
In short, sum of forces in any direction and sum of their moments about any point 
must be zero. 

 
Inertia force and couple: 

Inertia: Tendency to resist change either from state of rest or of uniform motion 
 

Let „R‟  be the resultant of all the external forces acting on the body, then this „R‟ 
will be equal to the product of mass of the body and the linear acceleration of c.g 
of body.  The force opposing this „R‟ is the inertia force (equal in magnitude and 
opposite in direction). 

 
(Inertia force is an Imaginary force equal and opposite force causing 
acceleration) 

 
If the body opposes angular acceleration (α) in addition to inertia force R, at its 
cg, there exists an inertia couple Ig x α, Where Ig= M I about cg. The sense of  
this couple opposes α. i.e., inertia force and inertia couple are equal in magnitude 
to accelerating force and couple respectively but, they act in opposite direction. 

 
Inertia force (Fi) = M x f, 

(mass of the rigid body x linear acceleration of cg of body) 
 

 
Inertia couple (Ci)=I x , 

MMI of the rigid body about an axis 
perpendicular to the plane of motion 

Angular 
acceleration 

 
 
 

Dynamic Equivalence: 

The line of action of the accelerating force can also be determined by replacing 
the given link by a dynamically equivalent system. Two systems are said to be 
dynamically equivalent to one another, if by application of equal forces, equal 
linear and angular accelerations are produced in the two systems. 
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.

g 2    2 1 1    1 2 

 

i.e., the following conditions must be satisfied; 

i) The masses of the two systems must be same. 
ii) The cg‟s of the two systems must coinside. 

iii) The moments of inertia of the two systems about same point must be 
equal, Ex: about an axis through cg. 

 
 

G = c.g. 

m = mass of the rigid body 

kg = radius of gyration about 
an axis through G and 
perpendicular to the plane 

 

A 

 
Now, it is to be replaced by dynamically equivalent system. 

. B 

.G 
D

 
 

m1, m2 

 
– masses of dynamically 

. 
A a1 

 

 
m1 

equivalent system at a1 & a2 
a2 from G (respectively) 

 
m2 

m 

 

As per the conditions of dynamic equivalence, 

m = m1+ m2 .. (a) 
m1 a1 = m2 a2 .. (b) 
mk 2 = m  a 2 + m   a 2 .. (c) 

g 1    1 2 2 
 

Substituting (b) in (c), 

mk 2 = (m a ) a + ( m a ) a 
 

= a1 a2 (m2+m1) = a1 a2 (m) 

i.e., k 2 = a a [I  mk 2 or k 2  
I g ] 

 

g 1 2 

or Ig  a a 
 

g g g m 

m 1 2 

Rigid body 
B 

m 
G. 
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 

b d 

g

g

g

 

 

Inertia of the connecting rod:  
 
 
 

Connecting rod to be replaced by a 
massless link with two point 

masses mb & md . 
 

m = Total mass of the CR mb& md point 
masses at B& D. 

 
 
 
 
 
 

mb  md  m   (i) 
 

mb  b  md  d   (ii) 
 

Substituting (ii) in (i); 
 

m   m 
b 

 
b  

b   m 
d 


m  1  

b   m 
 

 

or m  b  d   m 
 

b   
 d  b  d 




 d 
or mb  m  b  d   (1) 

 
 b 

Similarly; 
md  m  

b  d 
   (2) 

 


Also; I  m b 2  m d 2 

 
 d    2  b  2 

 m  b b  d  m  d b  d [ from (1) & (2)] 
   

 b  d 
I  mbd 

 b  d 
  mbd 




Then, mk 2  mbd, 

k 2  bd 

(since I  mk 2 ) 
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a b

2 2

 

The result will be more useful if the 2 masses are located at the centers of  bearings A & B. 
 

Let ma = mass at A and dist. AG = a 
 

Then, 
ma  mb  m 

 

m      b    b 
 

  

Since ( a  b l) 
m   m ; a a  b l 
 


Similarly, 

 
m  m 

 a   m 
a 

; 
 

  

 
 ( Since, a b l) 

 b a  b l 
 


I1  m a  m b  . . 

 
 
. . mbd 

 

(Proceeding on similar 
lines it can be proved) 

 

Assuming; a  d, I 1  I 
 

i.e., by considering the 2 masses A & B instead of D and B, the inertia couple (torque) is increased from 
the actual value. i.e., there exists an error, which is corrected by applying a correction couple (opposite 
to the direction of applied inertia torque). 
 

The correction couple, 

 T   c (mab  mbd ) 

 mb  c 

 
 

(a  d ) 

 mb  c  (a  b)  (b  d )
 mb  c (l  L) because (b  d  L) 

 

As the direction of applied inertia torque is always opposite to the direction of angular acceleration, the 
direction of the correction couple will be same as that of angular acceleration i.e., in the direction of 
decreasing angle β. 
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Dynamic force Analysis of a 4 – link mechanism. 
 
 

OABC is a 4–bar mechanism. Link 
2 rotates with constant 2. G2, G3 & 
G4 are the cgs and M1, M2 & M3 the 
masses of links 1, 2 & 3 
respectively. 

 
 
 

What is the torque required, which, the shaft at o must exert on link 2 to give the 
desired motion? 

 
1. Draw the velocity & acceleration polygons for determing the linear 

acceleration of G2, G3 & G4. 
2. Magnitude and sense of 3 & 4 (angular acceleration) are determined 

using the results of step 1. 
 

To determine inertia forces and couples 

Link 2 

F2 = accelerating force (towards O) 
 

Fi 2 
= inertia force (away from O) 

 

Since 2 is constant, 2 = 0 and no 
inertia torque involved. 
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i 3 

'

 

Link 3 
 

Linear acceleration of G3 (i.e., AG3) 
is in the direction of 
acceleration polygon. 

Og3 of 

 

F3 = accelerating force 
 
 
 
 

Inertia force ' acts in opposite direction. Due to 3, there must be a resultant 

torque T3 = I3 3 acting in the sense of 3 (I3 is MMI of the link about an axis 
through G3, perpendicular to the plane of paper). The inertia torque 
and opposite to T3. 

Ti 3 
is equal 

 

 
 

Fi3 can replace the inertia force i3 and inertia torque Ti 3 . F is tangent to circle of radius h 
i 3 

from G3, on the top side of it so as to oppose the angular acceleration 3. h3 
I33 

 

M 3 AG3 

 

Link 4 
 
 
 

 
 

h4 
I4 4 

 

M 4 AG4 

 
 
 
 
 
 
 
 

Problem 1 : 
 

It is required to carryout dynamic force analysis of the four bar mechanism shown in the figure. 
 

2 = 20rad /s (cw), 2 = 160 rad/s2 (cw) 

G4 

F 

F 3
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a A A

 

OA= 250mm, OG2= 110mm, AB=300mm, AG3=150mm, BC=300mm, CG4=140mm, OC=550mm, AOC  60


The masses & MMI of the various members are 
 

Link Mass, m MMI (IG, Kgm2) 
2 20.7kg 0.01872 
3 9.66kg 0.01105 
4 23.47kg 0.0277 

 
 

Determine i) the inertia forces of the moving members 
ii) Torque which must be applied to 

A) Inertia forces: 
 

(i) (from velocity & acceleration analysis) 
 

VA  250 20; 5m / s, VB  4 m / s, VBA  4.75 m / s 
r  250  202 ; 100m / s2 , t  250 160; 40m / s2 

 

Therefore; 

r V 2 (4)2 2 
AB  B 

CB 0.3 
 53.33 m / s 

r V 2 (4.75)2 2 
ABA  BA 

BA 0.3 
 75.21 m / s 

Og2 

Og4 

 AG2 

 AG 4 

 48 m/ s2 ; 

 65.4 m / s2 

Og3  AG3 120m/ s2 

  
At

 
 

19  2 
     BA     3 63.3 rad / s 
AB 

    
At

 

0.3 

129  2 
     B      4 430 rad / s 
CB 0.3 

2 

a
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2

3

Fp = load on the piston 
Link mass MMI 

2 m2 I2 
3 m3 I3 
4 m4 - 
2 assumed to be constant  

 

Inertia forces (accelerating forces) 

FG 2  m2 AG 2 
 

20.7 
 48  993.6 N ( in thedirection of Og ) 

9.81 2
 

FG3  m3 AG3  9.66  120  1159.2 N ( in the direction of Og3 ) 
 

 FG 4  m4 AG 4  23.47  65.4  1534.94 N (in thedirection of Og4 ) 
 

h  
IG 2 (2 )  

(0.01872 160)  3.01  103 m 
F2 993.6 

h  
IG3 (3)  

(0.01105  63.3)  6.03  104 m 
F3 1159.2 

h  
IG4 (4 )  

(0.0277  430) 
 

 7.76  10 3 m 
4 F 1534.94 

4 

The inertia force Fi 2, Fi3 & Fi 4 have magnitudes equal and direction opposite to the respective 

accelerating forces and will be tangents to the circles of radius h2, h3 & h4 from G2, G3 & G4 so as to oppose α2, α3 & α4. 

Fi 2  993.6 N , Fi3  1159.2 N Fi 4  1534.94N 
 

 
 

Further, each of the links is analysed for static equilibrium under the action of all external force on that link plus the 
inertia force. 

 

Dynamic force analysis of a slider crank mechanism. 
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0 

 

Steps involved: 
1. Draw velocity & acceleration diagrams 
2. Consider links 3 & 4 together and single FBD written (elimination 

 
 
F34 & F43 ) 

3. Since, weights of links are smaller compared to inertia forces, they are neglected unless 
specified. 

4. Accelerating forces F2 , F3 & F4 act in the directions of respective acceleration vectors 

Og2, Og3 & Og p 

 

Magnitudes: F2  m2 AG2 F3  m3 AG3 F4  m4 Ap 

Fi 2  F2 , Fi3  F3 , Fi 4  F4 (Opposite in direction) 

 

h  
I33 

 

M 3 g 

Fi 3 is tangent to the circle with 

h3 radius on the RHS to oppose  3 
 
 

 
Solve for T2 by solving the configuration for both static & inertia forces. 

 
 

Dynamic Analysis of slider crank mechanism (Analytical approach) 
 

Displacement of piston 
 

 
x = displacement from IDC 

 

x  BB1   BO  B1O 
  BO  (B1 A1 

 
 A1O)

(l  r)  (l cos  r cos ) 
sin ce, 

l  
 n 



(nr  r)  (rn cos  r cos ) 
 

 r(n 1)  (n cos  cos )

 
 r 




cos  1 sin 2 

3

3
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n2 sin 2 

n2 sin 2 

n2 sin 2  n2 



 r(n 1)  (  cos ) 

 r(1 cos )  (n  ) 




(similary l  r, 
l
 

r 
 n 1 & max valueof sin  1) 

  or n), 

 




This represents SHM and therefore Piston executes SHM. 

 
 

Velocity of Piston: 
 

v  
dx dx d
dt d dt 

 
d  




 
1  d

r (1 cos )  n (n2 sin 2 ) 2 
d    dt 
 r 0  sin  0  

1 
(n2  sin 2 )1/ 2 (2sin cos ) 

 2 
 sin 2 

 r sin     
 2   n2  sin 2  

Since, n2 >> sin2 , 
 

  v  r sin  
sin 2 

 2n   



Since n is quite large, 

sin 2 
can be neglected. 

2n 
 

 

 v  r sin 

1 
y
 

2 

l 2 

1  
(r sin  ) 2 

l 2

sin 2 
1

n2 

1 

n 
n 2  sin 2 x  r (1 cos ) 
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1 

n 
n 2  sin 2 

n 

n

n 



c

 

Acceleration of piston: 
 

a   
dv dv d
dt d dt 

 

 
d 

r (sin   
sin 2 

)


d  2n 


 r cos  
2 cos2 

 2n 


 r cos  
cos2 

 n 


If n is very large; 

 
 

When  = 0, at IDC, 

 
a  r 2 1  

1 







(as in SHM) 

 
 

When  = 180, at 0DC, 

 
a  r 2  1  

1 
  

 
At  = 180, when the direction is reversed, 

a  r 2 1  
1 

  
 



Angular velocity & angular acceleration of CR (c) 
 

y  l sin   r sin 


sin   
sin 

n 
 

Differentiating w.r.t time, 
 

cos  d  
1 

cos  
d

 

d  

dt n dt dt c 
 

    cos  

n 

d 
dt 

 
 

 
cos 

1 

n 
n 2  sin 2 

a  r 2 cos
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n2 sin 2 


c








    cos  

 
 

    
dc 

c dt 

 
d 

 
dc d 
d dt 

 






 
1 

 cos (n2 sin 2  ) 
d 

2  


 1  
3
 

 
 

 
1 




 2 cos


(n 2sin 2  ) 
2 

2 (2 sin  cos )  (n 2sin 2  ) 2 (sin  )



 

cos2  (n2sin 2  ) 



 2 sin 2  





3 
(n2sin 2  ) 2 





  2 sin 
(n21) 







3 




 (n
2sin 2  ) 2 

Negative sign indicates that,  reduces (in the case, the angular acceleration of CR is CW) 

 

 
Engine force Analysis: 
Forces acting on the engine are weight of reciprocating masses & CR, gas forces, Friction & inertia forces (due to 
acceleration & retardation of engine elements) 

 

i) Piston effort (effective driving force) 
 

- Net or effective force applied on the piston. 
 

In reciprocating engine: 

The reciprocating parts (masses) accelerate during the first half of the stroke and the inertia forces tend to resist the same. 
Thus, the net force on the piston is reduced. During the later half of the stroke, the reciprocating masses decelerate and 
the inertia forces oppose this deceleration or acts in the direction of applied gas pressure and thus effective force on 
piston is increased. 

 
In vertical engine, the weights of the reciprocating masses assist the piston during out stroke (down) this in creasing the 
piston effort by an amount equal to the weight of the piston. During the in stroke (up) piston effect is decreased by the 
same amount. 

Force on the piston due to gas pressure; FP = P1 A1 – P2 P1 = Pressure 

on the cover end, P2 = Pressure on the rod 

A1 = area of cover end, A2 = area of rod end, m = mass of the reciprocating parts. 
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c

n

 

Inertia force (Fi) = m a 
 

 m.r 2 Cos  
Cos2 




(Opposite to acceleration of piston) 
 
 



Force on the piston F = FP - Fi 
 

(if Ff frictional resistance is also considered) F = FP – Fi 

– Fi 

In case of vertical engine, weight of the piston or reciprocating parts also acts as force. 

 
 

 F = FP + mg – Fi – Fi 
 

ii) Force (Thrust on the CR) 
 
 
 
 
 
 
 
 
 
 

Fc = force on the CR 
 

Equating the horizontal components; 

F  Cos  F or F 
F

 
 

c c Cos 2


iii) Thrust on the sides of the cylinder 
It is the normal reaction on the cylinder walls 

 
F  F sin   F tan 

n 

 

iv) Crank effort (T) 

It is the net force applied at the crank pin perpendicular to the crank which gives the required TM on the crank shaft. 
 

Ft  r 

 
Ft 

 Fc r sin(  ) 

 
 Fc sin(  ) 

 

 
F 

cos
sin( ) 
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1 
n 2  sin 2 






2 

 

v) Thrust on bearings (Fr) 
 

The component of FC along the crank (radial) produces thrust on bearings 
 

Fr  Fc Cos(  ) 
F 

 
 

Cos 
Cos(  ) 

 

vi) Turning moment of Crank shaft 
 

T  Ft  r 
 

 
F 

cos
sin( )  r  

Fr 

cos
(sin   cos  cos sin ) 

 

 F  r sin   cos






sin  




cos 




sin  1 




Proved earlier 

 F  r sin   cos    cos 
 

 n 




  sin 2 

n2 sin 2  







n 
 

sin   
sin 

n 

 F  r sin     
 n2 sin 2  


Also,  

r sin(  )  OD cos


T  Ft  r 
 

 
F 

cos
. r sin (  ) 

 

 
F 

cos


. OD cos

1 

n 
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

T  F OD . 

 
 
 

UNIT –III 

Clutches, Brakes& Dynamometers 

Friction Clutches 

A friction clutch has its principal  application in the transmission of power of shafts  and machines which  

must be started and stopped frequently. Its application is also found in cases in which power is to be delivered to 

machines partially or fully loaded. The force of friction is used to start the driven  shaft  from  rest  and  gradually 

brings it up to the proper speed without excessive slipping of the friction surfaces. In automobiles, friction clutch is 

used to connect the engine to the driven shaft. In operating such a clutch, care should be taken so that the friction 

surfaces engage easily and gradually brings the driven shaft up to proper speed. The proper alignment of the bearing 

must be maintained and it should be located as close to the clutch as possible. It may be noted that 

1. The contact surfaces should develop a frictional force that may pick up and hold the load with reasonably low 

pressure between the contact surfaces. 

2. The heat of friction should be rapidly dissipated and tendency to grab should be at a minimum. 

3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform distribution of pressure. 

The friction clutches of the following types are important from the subject point of view : 

1. Disc or plate clutches (single disc or multiple disc clutch), 

2. Cone clutches, and 

3. Centrifugal clutches. 

We shall now discuss, these clutches, in detail, in the following pages. It may be noted that  the  disc and  

cone clutches are based on the same theory as the pivot and collar bearings. 

Single Disc or Plate Clutch 

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both sides are faced  

with a friction material (usually of Ferrodo). It is mounted on the hub which is free to move axially along the splines   

of the driven shaft. The pressure plate is mounted inside the clutch body which is bolted to the flywheel. Both the 

pressure plate and the flywheel rotate with the engine crankshaft or the driving shaft. The pressure plate pushes the 

clutch plate towards the flywheel by a set of strong springs which are arranged radially inside the body. The three 

levers (also known as release levers or fingers) are carried on pivots suspended from the case of the body. These are 

arranged in such a manner so that the pressure plate moves away from the flywheel by the inward movement of a  

thrust bearing. The bearing is mounted upon a forked shaft and moves forward when the clutch pedal is pressed. 

When the clutch pedal is pressed down, its linkage forces the thrust release bearing to move in towards the 

flywheel and pressing the longer ends of the  levers inward. The levers are  forced to  turn on their  suspended  pivot 

and the pressure plate moves away from the flywheel by the  knife edges, thereby compressing the clutch  springs.  

This action removes the pressure from the clutch plate and thus moves back from the flywheel and the driven shaft 

becomes stationary. On the other hand, when the foot is taken off from the  clutch  pedal, the thrust bearing moves  

back by the levers. This allows the springs to extend and thus the pressure plate pushes the clutch plate back towards 

the flywheel. 



 

 

 

 

The axial pressure exerted by the spring provides a frictional force in the circumferential direction wh

relative motion between the driving and driven members tends to take place. If the torque due to this frictional force 

exceeds the torque to be transmitted, then no slipping takes place and the power is transmitted from the driving shaft   

to the driven shaft. 

Now consider two friction surfaces, maintained in contact by an axial thrust 

T = Torque transmitted by the clutch

p = Intensity of axial pressure with which the contact surfaces are held together,

r1 and r2 = External and internal radii of friction faces, and

 = Coefficient of friction.

Consider an elementary ring of radius 

We know that area of contact surface or friction surface,

Normal or axial force on the ring,

and the frictional force on the ring acting tangentially at radius 

5 

The axial pressure exerted by the spring provides a frictional force in the circumferential direction wh

relative motion between the driving and driven members tends to take place. If the torque due to this frictional force 

exceeds the torque to be transmitted, then no slipping takes place and the power is transmitted from the driving shaft   

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in Fig. (

= Torque transmitted by the clutch 

= Intensity of axial pressure with which the contact surfaces are held together, 

and internal radii of friction faces, and 

= Coefficient of friction. 

Consider an elementary ring of radius r and thickness dr as shown in Fig. (b). 

We know that area of contact surface or friction surface, 

= 2  r.dr 

Normal or axial force on the ring, 

W = Pressure × Area = p × 2  r.dr 

and the frictional force on the ring acting tangentially at radius r, 

17 

 

The axial pressure exerted by the spring provides a frictional force in the circumferential direction when the 

relative motion between the driving and driven members tends to take place. If the torque due to this frictional force 

exceeds the torque to be transmitted, then no slipping takes place and the power is transmitted from the driving shaft   

, as shown in Fig. (a). 



 

 
 

Frictional torque acting on the ring,

 
We shall now consider the following two 

cases : 

1. When there is a uniform pressure, and 

2. When there is a uniform

wear. 

1. Considering  uniform  pressure 

When the pressure is uniformly distributed 

over the entire area of the friction face, then 

the intensity of pressure, 

 

We have discussed above that the frictional torque on the elementary ring of radius 

Integrating this equation within the limits from 

2. Considering uniform wear 

In Fig. 10.22, let p be the normal intensity of pressure at a distance 

of pressure varies inversely with the distance,

5 

Fr = .W = .p × 2  r.dr 

Frictional torque acting on the ring, 

Tr = Fr × r = .p × 2  r.dr × r = 2  ×  .p.r2 dr 

consider the following two 

 

uniform 

When the pressure is uniformly distributed 

over the entire area of the friction face, then 

We have discussed above that the frictional torque on the elementary ring of radius r and thickness dr 

Integrating this equation within the limits from r2 to r1 for the total frictional torque. 

be the normal intensity of pressure at a distance r from the axis of the clutch. Since the intensity  

of pressure varies inversely with the distance, therefore 
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dr is 

from the axis of the clutch. Since the intensity  



 

 

 

 
 
 
 
 

Multiple Disc Clutch 

A multiple disc clutch, as shown in Fig. 10.23, may 

inside discs (usually of steel) are fastened to the driven shaft to permit axial motion (except for the last disc). The 

outside discs (usually of bronze) are held by bolts and are fastened to the housin

shaft. The multiple disc clutches are extensively used in motor cars, machine tools

Let 

n1 = Number of discs on the driving shaft, and

n2 = Number of discs on the driven shaft.

5 

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be transmitted. The 

inside discs (usually of steel) are fastened to the driven shaft to permit axial motion (except for the last disc). The 

outside discs (usually of bronze) are held by bolts and are fastened to the housing which is keyed to the driving 

shaft. The multiple disc clutches are extensively used in motor cars, machine tools etc. 

= Number of discs on the driving shaft, and 

= Number of discs on the driven shaft. 
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be used when a large torque is to be transmitted. The 

inside discs (usually of steel) are fastened to the driven shaft to permit axial motion (except for the last disc). The 

g which is keyed to the driving 



 

 

 

Cone Clutch 

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now

completely by the disc clutch 

5 

clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it has been replaced 
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days it has been replaced 

 



 

 
 

It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the driving s

and has an inside conical surface or face which exactly fits into the outside conical surface of the driven. The driven 

member resting on the feather key in the driven shaft, may be shifted along the shaft by a forked lever provided at  

in order to engage the clutch by bringing the two conical surfaces in contact. Due to the frictional resistance set up at 

this contact surface, the torque is transmitted from one shaft to another. In some cases, a spring is placed around the 

driven shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains the 

pressure between them, and the forked lever is used only for  disengagement  of the clutch.  The contact  surfaces  of 

the clutch may be metal to metal contact, but more often the driven member is lined with some material like wood, 

leather, cork or asbestos etc. The material of the clutch faces (

normal pressure and the coefficient of friction. Consid

the area of contact of a pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone 

clutch may be determined in the similar manner as discussed for conic

 

 
 
 

pn = Intensity of pressure with which the conical friction surfaces are held together (

between contact surfaces), 

r1 and r2 = Outer and inner radius of friction surfaces respectively.

R = Mean radius of the friction surface

 = Semi angle of the cone (also called face angle of the cone) or the angle of the friction surface with the axis   

of the clutch, 

 = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known

 
Consider a small ring of radius r and thickness 

5 

It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the driving shaft by a sunk key 

and has an inside conical surface or face which exactly fits into the outside conical surface of the driven. The driven 

member resting on the feather key in the driven shaft, may be shifted along the shaft by a forked lever provided at  

in order to engage the clutch by bringing the two conical surfaces in contact. Due to the frictional resistance set up at 

this contact surface, the torque is transmitted from one shaft to another. In some cases, a spring is placed around the 

ft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains the 

pressure between them, and the forked lever is used only for  disengagement  of the clutch.  The contact  surfaces  of 

l contact, but more often the driven member is lined with some material like wood, 

leather, cork or asbestos etc. The material of the clutch faces (i.e. contact surfaces)  depends  upon the  allowable 

normal pressure and the coefficient of friction. Consider a pair of friction surface as shown in Fig. 10.25 (

the area of contact of a pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone 

clutch may be determined in the similar manner as discussed for conical pivot bearings in Art. 

= Intensity of pressure with which the conical friction surfaces are held together (i.e. normal  pressure 

= Outer and inner radius of friction surfaces respectively. 

the friction surface 

= Semi angle of the cone (also called face angle of the cone) or the angle of the friction surface with the axis   

= Coefficient of friction between contact surfaces, and 

= Width of the contact surfaces (also known as face width or clutch face). 

and thickness dr, as shown in Fig. 10.25 (b). Let dl is length of ring of the friction
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haft by a sunk key 

and has an inside conical surface or face which exactly fits into the outside conical surface of the driven. The driven 

member resting on the feather key in the driven shaft, may be shifted along the shaft by a forked lever provided at  B,  

in order to engage the clutch by bringing the two conical surfaces in contact. Due to the frictional resistance set up at 

this contact surface, the torque is transmitted from one shaft to another. In some cases, a spring is placed around the 

ft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains the 

pressure between them, and the forked lever is used only for  disengagement  of the clutch.  The contact  surfaces  of 

l contact, but more often the driven member is lined with some material like wood, 

contact surfaces)  depends  upon the  allowable 

er a pair of friction surface as shown in Fig. 10.25 (a). Since    

the area of contact of a pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone 

normal  pressure 

= Semi angle of the cone (also called face angle of the cone) or the angle of the friction surface with the axis   

is length of ring of the friction 



 

 
 

surface, such that  
 
 

Area of the ring,

We shall consider the following two cases :

1. When there is a uniform pressure,

2. When there is a uniform
1. Considering uniform pressure 

We know that normal load acting on the ring,

Wn = Normal pressure × Area of ring = 

and the axial load acting on the ring,

W = Horizontal component of 

Total axial load transmitted to 
 

 

 
We know that frictional force on the ring acting tangentially at 

F

Frictional torque acting on the ring,

Tr = Fr × r = 

Integrating this expression within the limits from 

Total frictional torque,

5 

Area of the ring, 

 
dl = dr.cosec 


A = 2 r.dl = 2r.dr cosec 

We shall consider the following two cases : 

When there is a uniform pressure, and 

When there is a uniform wear. 

We know that normal load acting on the ring, 

= Normal pressure × Area of ring = pn × 2  r.dr.cosec 

and the axial load acting on the ring, 

= Horizontal component of W n (i.e. in the direction of W ) 

= W n × sin  = pn × 2 r.dr. cosec  × sin  = 2

Total axial load transmitted to the clutch or the axial spring force required,

We know that frictional force on the ring acting tangentially at  radius  r, 

Fr = .W n = .pn × 2  r.dr.cosec 

Frictional torque acting on the ring, 

= .pn × 2  r.dr. cosec .r = 2  .pn.cosec .r2 dr 

Integrating this expression within the limits from r2 to r1 for the total frictional torque on the clutch.

Total frictional torque, 
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= 2 × pn.r.dr 

the clutch or the axial spring force required, 

 

for the total frictional torque on the clutch. 



 

 

 

 
Substituting the value of pn from equation 

 

2. Considering uniform wear 

In Fig. 10.25, let pr be the normal intensity of pressure at a distance 

that, in case of uniform wear, the intensity of pressure varies inversely with the distance.

5 

from equation (i), we get 

be the normal intensity of pressure at a distance r from the axis of the clutch. We know 

that, in case of uniform wear, the intensity of pressure varies inversely with the distance. 
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from the axis of the clutch. We know 

 



 

 

 

Centrifugal Clutch 

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a  number of  shoes  on the  

inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the shoes are covered with a  friction 

material. These shoes, which can move radially in guides, are

against the boss (or spider) on the driving shaft by means of springs. The springs exert  a radially inward  force which  

is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially  outward  fo

centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A 

little consideration will show that when the centrifugal force is less than the  spring force, the shoe  remains in the  

same position as when the driving shaft was stationary, but when the  centrifugal force is equal to the spring force,    

the shoe is just floating. When the centrifugal  force exceeds the  spring force, the shoe moves  outward  and comes  

into contact with the driven member and presses against it. The force with which the shoe presses against the driven 

member is the difference of the centrifugal

5 

al clutches are usually incorporated into the motor pulleys. It consists of a  number of  shoes  on the  

inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the shoes are covered with a  friction 

e radially in guides, are held 

against the boss (or spider) on the driving shaft by means of springs. The springs exert  a radially inward  force which  

is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially  outward  fo

centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A 

little consideration will show that when the centrifugal force is less than the  spring force, the shoe  remains in the  

osition as when the driving shaft was stationary, but when the  centrifugal force is equal to the spring force,    

the shoe is just floating. When the centrifugal  force exceeds the  spring force, the shoe moves  outward  and comes  

riven member and presses against it. The force with which the shoe presses against the driven 

centrifugal force and the spring force. The increase of speed causes 
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al clutches are usually incorporated into the motor pulleys. It consists of a  number of  shoes  on the  

inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the shoes are covered with a  friction 

 

against the boss (or spider) on the driving shaft by means of springs. The springs exert  a radially inward  force which  

is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially  outward  force  (i.e.  

centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A 

little consideration will show that when the centrifugal force is less than the  spring force, the shoe  remains in the  

osition as when the driving shaft was stationary, but when the  centrifugal force is equal to the spring force,    

the shoe is just floating. When the centrifugal  force exceeds the  spring force, the shoe moves  outward  and comes  

riven member and presses against it. The force with which the shoe presses against the driven 

 the shoe to press 
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harder  
and enables more torque to be transmitted. 

In order to determine the mass and size of the shoes, the following procedure is adopted : 

1. Mass of the shoes 
Consider one shoe of a centrifugal clutch as shown in Fig 

 
 

 
 
 
 
 
 
 

place, 

We know that the centrifugal force acting on each shoe at the running speed, 

*Pc = m.2.r 

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to take 
 
 

Ps = m (1)2 r 

The net outward radial force (i.e. centrifugal force) with which the shoe presses against the rim at the 

running speed  

= Pc – Ps 

and the frictional force acting tangentially on each shoe, 

F =  (Pc – Ps) 

Frictional torque acting on each shoe,  

= F × R =  (Pc – Ps) R 
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and total frictional torque transmitted, 
 
 

T =  (Pc – Ps) R × n = n.F.R 

 

2. Size of the shoes 

From this expression, the mass of the shoes (m) may be evaluated. 

 

l = Contact length of the shoes, 

b = Width of the shoes, 

R = Contact radius of the shoes. It is same as the inside radius of the rim of the pulley. 

 = Angle subtended by the shoes at the centre of the spider in radians. 

p = Intensity of pressure exerted on the shoe. In order to ensure reasonable life, the intensity of 

pressure may be taken as 0.1 N/mm2 

Area of contact of the shoe, 

A = l.b 
and the force with which the shoe presses against the rim 

= A × p = l.b.p 

Since the force with which the shoe presses against the rim at the running speed is (Pc – Ps), 

therefore 

l.b.p = Pc – Ps 
From this expression, the width of shoe (b) may be obtained. 
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Introduction 
A brake is a device by means of which artificial frictional resistance is applied to a  moving  machine 

member, in order to retard or stop the motion of a machine. In the process of performing this function, the brake 

absorbs either kinetic energy of the moving member or potential energy given up by objects being lowered by hoists, 

elevators etc. The energy absorbed by brakes is dissipated in the form of heat. This heat is dissipated in the  

surrounding air (or water which is circulated through the passages in the brake drum) so that excessive heating of the 

brake lining does not take place. The capacity of a brake depends upon the following factors : 

1. The unit pressure between the braking surfaces, 

2. The coefficient of friction between the braking surfaces, 

3. The peripheral velocity of the brake drum, 

4. The projected area of the friction surfaces, and 

5. The ability of the brake to dissipate heat equivalent to the energy being absorbed. 

The major functional difference between a clutch and a brake is that a clutch is used to keep the driving and 

driven member moving together, whereas brakes are used to stop a moving member or to control its speed. 

 
 

Materials for Brake Lining 

The material used for the brake lining should have the following characteristics 

1. It should have high coefficient of friction with minimum fading. In other words, the coeffi- cient of  

friction should remain constant with change in temperature. 

2. It should have low wear rate. 

3. It should have high heat resistance. 

4. It should have high heat dissipation  capacity. 

5. It  should  have adequate mechanical strength. 

6. It should not be affected by moisture and  oil. 

The materials commonly used for facing or lining of brakes and their properties are shown in the following 

table. 

Types of Brakes 

The brakes, according to the means used for transforming the energy by the braking elements, are classified 

as :  

1. Hydraulic brakes e.g. pumps or hydrodynamic brake and fluid agitator, 

2. Electric brakes e.g. generators and eddy current brakes, and 

3. Mechanical brakes. 

The hydraulic and electric brakes cannot bring the member to rest and are mostly used where large amounts 



 

 
 

of energy are to be transformed while the brake is retarding the load such as in 

trucks and electric locomotives. These brakes are also used for retarding or controlling the speed of a vehicle for down

hill travel. The mechanical brakes, according to the direction of acting force, may be  divided  into

groups : 

(a) Radial brakes. In these brakes, the force acting on the brake drum is in radial direction. The radial brakes 

may be sub-divided into external brakes 

elements, these brakes may be block 

(b) Axial brakes. In these brakes, the force  acting on the brake drum  is in axial direction. The axial brakes  

may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches. Since w

concerned with only mechanical

Single Block or Shoe Brake 

A single block or shoe brake is shown in Fig. 19.1. It consists of  a block or  shoe which is  pressed against  

the rim of a revolving brake wheel drum. The block is made of a softer material than the rim of the wheel. This type   

of a brake is commonly used on railway trains and tram cars. The friction between the block and the wheel causes a 

tangential braking force to act on the wheel, which retard the rotation of the wheel. The block is pressed against the 

wheel by a force applied to one end of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other      

end of the lever is pivoted on a fixed fulcrum

If the angle of contact is less than 60°, then it may be assumed that the normal pressure between the block  

and the wheel is uniform. In such cases, tangential braking force on the

Let us now consider the following three cases :

Case 1. When the line of action of tangential braking force (

brake wheel rotates clockwise as shown in Fig. (

have 
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of energy are to be transformed while the brake is retarding the load such as in laboratory dynamometers, high way 

trucks and electric locomotives. These brakes are also used for retarding or controlling the speed of a vehicle for down

hill travel. The mechanical brakes, according to the direction of acting force, may be  divided  into  the  following two 

In these brakes, the force acting on the brake drum is in radial direction. The radial brakes 

external brakes and internal brakes. According to the shape of the friction 

block or shoe brakes and band brakes. 

In these brakes, the force  acting on the brake drum  is in axial direction. The axial brakes  

may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches. Since w

only mechanical brakes, therefore, these are discussed, in detail, in the following

A single block or shoe brake is shown in Fig. 19.1. It consists of  a block or  shoe which is  pressed against  

rim of a revolving brake wheel drum. The block is made of a softer material than the rim of the wheel. This type   

of a brake is commonly used on railway trains and tram cars. The friction between the block and the wheel causes a 

o act on the wheel, which retard the rotation of the wheel. The block is pressed against the 

wheel by a force applied to one end of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other      

crum O. 

If the angle of contact is less than 60°, then it may be assumed that the normal pressure between the block  

and the wheel is uniform. In such cases, tangential braking force on the wheel, 

Let us now consider the following three cases : 

When the line of action of tangential braking force (Ft ) passes through the fulcrum O of the lever, and the 

brake wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about the fulcrum 
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trucks and electric locomotives. These brakes are also used for retarding or controlling the speed of a vehicle for down-
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In these brakes, the force acting on the brake drum is in radial direction. The radial brakes 

According to the shape of the friction 

In these brakes, the force  acting on the brake drum  is in axial direction. The axial brakes  

may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches. Since we are 
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A single block or shoe brake is shown in Fig. 19.1. It consists of  a block or  shoe which is  pressed against  

rim of a revolving brake wheel drum. The block is made of a softer material than the rim of the wheel. This type   

of a brake is commonly used on railway trains and tram cars. The friction between the block and the wheel causes a 

o act on the wheel, which retard the rotation of the wheel. The block is pressed against the 

wheel by a force applied to one end of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other      

 

If the angle of contact is less than 60°, then it may be assumed that the normal pressure between the block  

of the lever, and the 

), then for equilibrium, taking moments about the fulcrum O, we  



 

 

 

It may be noted that when the brake  wheel rotates anticlockwise as shown in Fig.  (

torque is same, i.e 

Case 2. When the line of action of the tangential braking force (

O, and the brake wheel rotates clockwise as shown in Fig. (

fulcrum O, 

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (

Case 3. When the line of action of the tangential 

O, and the brake wheel rotates clockwise as shown in Fig. 19.3 (

fulcrum O, we have 
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noted that when the brake  wheel rotates anticlockwise as shown in Fig.  (b), then the braking  

When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ below the fulcrum  

wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about  the  

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium.

When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ above the fulcrum  

, and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for equilibrium, taking moments about the 
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), then the braking  

’ below the fulcrum  

), then for equilibrium, taking moments about  the  

 

), then for equilibrium. 

’ above the fulcrum  

), then for equilibrium, taking moments about the 



 

 

 

and braking torque, 
 
 
 

When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (

moments about the fulcrum O, we have 

 

Pivoted Block or Shoe Brake 

We have discussed in the previous article that when the angle of contact is less than 60°, then 

assumed that the normal pressure between the  block and the wheel is uniform. But when the angle of  contact is  

greater than 60°, then the unit pressure normal to the surface of contact is less at the ends than at the centre. In such 

cases, the block or shoe is pivoted to the lever, as shown in Fig. 19.4, instead of  being rigidly attached to the lever. 

This gives uniform wear of the brake lining in the direction of the applied force. The braking torque for a pivoted  

block or shoe brake (i.e. when 2  > 60°) is

given by 
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We have discussed in the previous article that when the angle of contact is less than 60°, then 

assumed that the normal pressure between the  block and the wheel is uniform. But when the angle of  contact is  

greater than 60°, then the unit pressure normal to the surface of contact is less at the ends than at the centre. In such 

block or shoe is pivoted to the lever, as shown in Fig. 19.4, instead of  being rigidly attached to the lever. 

This gives uniform wear of the brake lining in the direction of the applied force. The braking torque for a pivoted  

is 
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), then  for  equilibrium,  taking  

We have discussed in the previous article that when the angle of contact is less than 60°, then it may be 

assumed that the normal pressure between the  block and the wheel is uniform. But when the angle of  contact is  

greater than 60°, then the unit pressure normal to the surface of contact is less at the ends than at the centre. In such 

block or shoe is pivoted to the lever, as shown in Fig. 19.4, instead of  being rigidly attached to the lever. 

This gives uniform wear of the brake lining in the direction of the applied force. The braking torque for a pivoted  



 

 
 

Simple Band Brake 

A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with friction material, 

which embraces a part of the circumference of the drum. A band brake, a

brake in which one end  of the band is attached to a fixed pin or fulcrum of the lever while the other end is attached   

to the lever at a distance b from the fulcrum. When a force 

fulcrum pin O and tightens the band on the drum and hence  the brakes  are  applied. The friction  between the band 

and the drum provides the braking force. 

 = Angle of lap (or embrace) of the band on the drum,

µ = Coefficient of friction between the band and the drum,

r = Radius of the drum, 

t = Thickness of the band, and

re = Effective radius of the drum

We know that limiting ratio of the tensions is given 
 

and braking force on the drum = 

Braking torque on the drum,

TB = (T 1 – T 2) r 

= (T 1 – T 2) re 

Now considering the equilibrium of the lever 

clockwise direction, as shown in Fig.(a), the end of the band attached to the fulcrum 

and end of the band attached to B will be tight with tension 
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A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with friction material, 

which embraces a part of the circumference of the drum. A band brake, as shown in Fig., is called a 

in which one end  of the band is attached to a fixed pin or fulcrum of the lever while the other end is attached   

from the fulcrum. When a force P is applied to the lever at C, the lever turns about the 

and tightens the band on the drum and hence  the brakes  are  applied. The friction  between the band 

 The force P on the lever at C may be determined as discussed

= Angle of lap (or embrace) of the band on the drum, 

µ = Coefficient of friction between the band and the drum, 

= Thickness of the band, and 

= Effective radius of the drum 

We know that limiting ratio of the tensions is given by the relation, 

and braking force on the drum = T 1 – T2 

Braking torque on the drum, 

 . . . (Neglecting thickness of band) 

 . . . (Considering thickness of band) 

Now considering the equilibrium of the lever OBC. It may be noted that when the drum rotates in the 

), the end of the band attached to the fulcrum O will be slack with tension 

will be tight with tension T1. On the other hand, when the drum rotates in the
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A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with friction material, 

s shown in Fig., is called a simple band 

in which one end  of the band is attached to a fixed pin or fulcrum of the lever while the other end is attached   

e lever turns about the 

and tightens the band on the drum and hence  the brakes  are  applied. The friction  between the band 

discussed below : 

be noted that when the drum rotates in the 

will be slack with tension T2  

rotates in the 



 

 
 

anticlockwise direction, as shown in Fig.(

the fulcrum O will be tight with tension 

taking moments about the fulcrum O, we 

P.l = T1.b . . . (For clockwise rotation of the

P.l = T 2.b . . . (For anticlockwise rotation of the

 
Internal Expanding Brake 

An internal  expanding brake consists of two shoes  

shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent 

wearing away of the metal. Each shoe is pivoted at one end about a fixed fulcru

cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction 

between the shoes and the drum produces

 

normally held in off position by a spring as  shown in Fig. 19.24. The drum encloses the entire mechanism to keep    

out dust and moisture. This type of brake is commonly used in motor cars and light

We shall now consider the

as shown in Fig. 19.25. It may be noted

primary shoe while the right hand

5 

anticlockwise direction, as shown in Fig.(b), the tensions in the band will reverse, i.e. the end of the band attached to 

will be tight with tension T1 and the end of the band attached to B will be slack with tension 

 have 

. . . (For clockwise rotation of the drum) 

. . . (For anticlockwise rotation of the drum) 

An internal  expanding brake consists of two shoes  S1  and  S2  as shown in Fig.. The outer surface of the  

shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent 

wearing away of the metal. Each shoe is pivoted at one end about a fixed fulcrum O1 and O2 and made to contact  a  

cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction 

produces the braking torque and hence reduces the speed of the drum.

normally held in off position by a spring as  shown in Fig. 19.24. The drum encloses the entire mechanism to keep    

out dust and moisture. This type of brake is commonly used in motor cars and light trucks. 

the forces acting on such a brake, when the drum rotates in the anticlockwise

noted that for the anticlockwise direction, the left hand shoe is known

hand shoe is known as trailing or secondary shoe. 
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. the end of the band attached to 

th tension T 2. Now 

as shown in Fig.. The outer surface of the  

shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent 

and made to contact  a  

cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction 

drum. The shoes are 

normally held in off position by a spring as  shown in Fig. 19.24. The drum encloses the entire mechanism to keep    

anticlockwise direction 

known as leading or 



 

 
 

Consider a small element of the brake lining 

OO1 as shown in Fig. 19.25. It is assumed that

wears out more at the free end. Since the shoe turns about 

proportional to the radial displacement of that point. The rate of wear of the shoe lining varies directly

distance from O1 to OA, i.e. O1B. From the geometry of the

and normal pressure at A,  
p

Normal force acting on the element,
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Consider a small element of the brake lining AC subtending an angle  at the centre. Let OA makes an angle 

that the pressure distribution on the shoe is nearly uniform, however

wears out more at the free end. Since the shoe turns about O1, therefore the rate of wear of the shoe lining at 

proportional to the radial displacement of that point. The rate of wear of the shoe lining varies directly as the perpendicular 

. From the geometry of the figure, 

O1B = OO1  sin 

pN sin  or pN  p1 sin 
Normal force acting on the element, 
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makes an angle  with 

however the friction lining 

, therefore the rate of wear of the shoe lining at A will be 

as the perpendicular 



 

 

 

 

 
 

Types of Dynamometers 

Following are the two types of dynamometers, used for measuring the brake power of an engine.

1. Absorption dynamometers,

2. Transmission dynamometers.

In the absorption dynamometers

friction resistances of the brake and is transformed into heat, during the process of measurement. But in the 

transmission dynamometers, the energy is not wasted in friction but is used f

power produced by the engine is transmitted through 

developed is suitably measured. 

Classification of Absorption Dynamometers

The following two types of absorption dynam

1. Prony brake dynamometer,

2. Rope brake dynamometer.
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Following are the two types of dynamometers, used for measuring the brake power of an engine.

Absorption dynamometers, and 

dynamometers. 

dynamometers, the entire energy or power produced by the engine is absorbed by the 

friction resistances of the brake and is transformed into heat, during the process of measurement. But in the 

the energy is not wasted in friction but is used for  doing work.  The energy or  

power produced by the engine is transmitted through the dynamometer to some other machines where the power 

Classification of Absorption Dynamometers 

The following two types of absorption dynamometers are important from the subject point of view :

Prony brake dynamometer, and 

dynamometer. 
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Following are the two types of dynamometers, used for measuring the brake power of an engine. 

the entire energy or power produced by the engine is absorbed by the 

friction resistances of the brake and is transformed into heat, during the process of measurement. But in the 

or  doing work.  The energy or  

dynamometer to some other machines where the power 

ometers are important from the subject point of view : 
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These dynamometers are discussed, in detail, in the following pages. 

Prony Brake Dynamometer 

A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown in Fig. 19.31.  

It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine whose power is  required to     

be measured. The blocks are clamped by means of two bolts and nuts, as shown in Fig.. A helical spring is provided 

between the nut and the upper block to adjust the pressure on the pulley to control its speed.  The upper block has a 

long lever attached to it and carries a weight W at its outer end. A counter weight is placed  at  the other end of the 

lever which balances the brake when unloaded. Two stops S, S are provided to limit the motion of the lever 

 

When the brake is to be put in operation, the long end of the lever is loaded with suitable weights W and the nuts are 

tightened until the engine shaft runs at a constant speed and the lever is in horizontal position. Under these conditions, the 

moment due to the weight W must balance the mo- ment of the frictional resistance between the blocks and the pulley. 

 

Rope Brake Dynamometer 

It is another form of absorption type dynamometer which is most 

commonly used for measur- ing the brake power of the engine. It consists  

of one, two or more ropes wound around the flywheel or rim of a pulley 

fixed rigidly to the shaft of an engine. The upper end of the ropes  is 

attached to a spring balance while the lower end of the ropes is kept in 

position by applying a dead weight as shown in Fig..  In order to prevent  

the slipping of the rope over the flywheel, wooden blocks are placed at 

intervals around the circumference of the flywheel. In the operation of the 

brake, the engine is made to run at a constant speed. The frictional torque, 

due to the rope, must be equal to the torque being transmitted  by  the 

engine. 
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Classification of Transmission Dynamometers 

The following types of transmission dynamometers are important from the subject point of view : 

1. Epicyclic-train dynamometer, 

2. Belt transmission dynamometer, and 

3. Torsion dynamometer. 

We shall now discuss these dynamometers, in detail, in the following pages. 

Epicyclic-train Dynamometer 
 

An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train of gears, i.e. a 

spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is keyed to the engine shaft (i.e. 

driving shaft) and rotates in anticlockwise direction. The annular gear is also keyed to the driving shaft and rotates in 

clockwise direction. The pinion or the intermediate gear meshes with both the spur and annular gears. The pinion 

revolves freely on  a lever which is pivoted to the common axis of the driving and driven  shafts.  A weight  w is  

placed at the smaller end of the lever in order to keep it in position. A little consideration  will  show that  if the  

friction of the pin on which the pinion  rotates is  neglected, then the tangential effort  P exerted  by the spur gear on  

the pinion and the tangential reaction of the annular gear on the pinion are equal. 

Since these efforts act in the upward direction as shown, therefore total upward force on the lever acting 

through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum and it is balanced by a dead 

weight W at the end of the lever. The stops S, S are provided to control the movement of the lever. 

For equilibrium of the lever, taking moments about the fulcrum F, 

2P × a = W.L      or P = W.L /2a 

 
Belt Transmission Dynamometer-Froude or Throneycroft Transmission Dynamometer 

When the belt is transmitting power from one pulley to another, the tangential effort on the driven pulley is 

equal to the difference between the tensions in the tight and slack sides of the belt.  A  belt  dynamometer  is  

introduced to measure directly the difference between the tensions of the belt, while it is running. 
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A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft transmission 

dynamometer. It consists of a pulley A (called driving pulley) which is rigidly fixed to the shaft of an engine whose power is 

required to be measured. There is another pulley B (called driven pulley) mounted on another shaft to which the power from 

pulley A is transmitted. The pulleys A and B are connected by means of a continuous belt passing round the two loose pulleys C 

and D which are mounted on a T-shaped frame. The frame is pivoted at E and its movement is controlled by two stops S,S. Since 

the tension in the tight side of the belt (T1) is greater than the tension in the slack side of the belt (T2), therefore the total force 

acting on the pulley C (i.e. 2T1) is greater than the total force acting on the pulley D (i.e. 2T2). It is thus obvious that the frame 

causes movement about E in the anticlockwise direction. In order to balance it, a weight W is applied at a distance L from E on 

the frame as shown in Fig. 

Now taking moments about the pivot E, neglecting friction, 

2T1  a  2T2   a  W . 
 
 

Torsion Dynamometer 

A torsion dynamometer is used for measuring large powers particularly the power transmit- ted along the 

propeller shaft of a turbine or motor vessel. A little consideration will show that  when  the  power  is  being 

transmitted, then the driving end of the shaft twists through a small angle relative to the driven end of the shaft. The 

amount of twist depends upon many factors such as torque acting on the shaft (T), length of the shaft (l), diameter of 

the shaft (D) and modulus of rigidity (C) of the material of the shaft. We know that the torsion equation is 
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TURNING MOMENT DIAGRAM AND FLY WHEELS 

Turning Moment Diagram: The turning moment diagram is graphical representation of the turning moment or crank effort for 

various positions of crank. 

Single cylinder double acting engine: 
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Turning moment diagram for 4-stroke I.C engine: 
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Turning moment diagram for a multi cylinder engine: 
 

Fluctuation of Energy: 

The difference in the kinetic energies at the point is called the maximum fluctuation of 

energy. 
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Fluctuation of Speed: 

This is defined as the ratio of the difference between the maximum and minimum angular 

speeds during a cycle to the mean speed of rotation of the crank shaft. 

Maximum fluctuation of energy: 
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Coefficient of fluctuation of energy: 
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Coefficient of fluctuation of speed: 
 

Energy stored in flywheel: 

 
A flywheel is a rotating mass that is used as an energy reservoir in a machine. It 

absorbs energy in the form of kinetic energy, during those periods of crank rotation 

when actual turning moment is greater than the resisting moment and release energy, 

by way of parting with some of its K.E, when the actual turning moment is less than 

the resisting moment. 
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Rotating centerline:  
The rotating centerline being defined as the axis about which the rotor would rotate if not 
constrained by its bearings. (Also called the Principle Inertia Axis or PIA). 

 
Geometric centerline: 
The geometric centerline being the physical centerline of the rotor. 

 
When the two centerlines are coincident, then the rotor will be in  a state of balance. 
When they are apart, the rotor will be unbalanced. 

 
Different types of unbalance can be defined by the relationship between the two 
centerlines. These include:  
Static Unbalance – where the PIA is displaced parallel to the geometric centerline. 
(Shown above)  
Couple Unbalance – where the PIA intersects the geometric centerline at the center of 
gravity. (CG)  
Dynamic Unbalance – where the PIA and the geometric centerline do not coincide or 
touch.  
The most common of these is dynamic unbalance. 

 
Causes of Unbalance:  
In the design of rotating parts of a machine every care is taken to eliminate any out of 
balance or couple, but there will be always some residual unbalance left in the finished 
part because of  

1. slight variation in the density of the material or 
2. inaccuracies in the casting or 
3. inaccuracies in machining of the parts. 

 
Why balancing is so important?  

1. A level of unbalance that is acceptable at a low speed is completely unacceptable at 
a higher speed. 

2. As machines get bigger and go faster, the effect of the unbalance is much more severe. 
3. The force caused by unbalance increases by the square of the speed. 
4. If the speed is doubled, the force quadruples; if the speed is tripled the force increases  



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
 

by a factor of nine! 
 

Identifying and correcting the mass distribution and thus minimizing the force and 
resultant vibration is very very important 

 
BALANCING: 

 
Balancing is the technique of correcting or eliminating unwanted inertia forces or 
moments in rotating or reciprocating masses and is achieved by changing the location of 
the mass centers.  
The objectives of balancing an engine are to ensure: 

 
1. That the centre of gravity of the system remains stationery during a complete revolution 

of the crank shaft and  
2. That the couples involved in acceleration of the different moving parts balance 

each other. 
 

Types of balancing: 
 

a) Static Balancing:  
i) Static balancing is a balance of forces due to action of gravity.  
ii) A body is said to be in static balance when its centre of gravity is 

in the axis of rotation. 
b) Dynamic balancing:  

i) Dynamic balance is a balance due to the action of inertia forces.  
ii) A body is said to be in dynamic balance when the 

resultant moments or couples, which involved in the 
acceleration of different moving parts is equal to zero.  

iii) The conditions of dynamic balance are met, the 
conditions of static balance are also met. 

 
In rotor or reciprocating machines many a times unbalance of forces is produced due to 
inertia forces associated with the moving masses. If these parts are not properly balanced, 
the dynamic forces are set up and forces not only increase loads on bearings and stresses 
in the various components, but also unpleasant and dangerous vibrations. 

 
Balancing is a process of designing or modifying machinery so that the unbalance is 
reduced to an acceptable level and if possible eliminated entirely. 

 
BALANCING OF ROTATING MASSES 

 
When a mass moves along a circular path, it experiences a centripetal acceleration and a 
force is required to produce it. An equal and opposite force called centrifugal force acts 
radially outwards and is a disturbing force on the axis of rotation. The magnitude of this 
remains constant but the direction changes with the rotation of the mass.  
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In a revolving rotor, the centrifugal force remains balanced as long as the centre of the 
mass of rotor lies on the axis of rotation of the shaft. When this does not happen, there is 
an eccentricity and an unbalance force is produced. This type of unbalance is common in 
steam turbine rotors, engine crankshafts, rotors of compressors, centrifugal pumps etc.  
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The unbalance forces exerted on machine members are time varying, impart vibratory 
motion and noise, there are human discomfort, performance of the machine deteriorate 
and detrimental effect on the structural integrity of the machine foundation. 

 
Balancing involves redistributing the mass which may be carried out by addition or 
removal of mass from various machine members Balancing of rotating masses can be of 

 
1. Balancing of a single rotating mass by a single mass rotating in the same plane. 
2. Balancing of a single rotating mass by two masses rotating in different planes. 
3. Balancing of several masses rotating in the same plane 
4. Balancing of several masses rotating in different planes 

 
STATIC BALANCING:  
A system of rotating masses is said to be in static balance if the combined mass centre of 

the system lies on the axis of rotation  
DYNAMIC BALANCING;  
When several masses rotate in different planes, the centrifugal forces, in addition to being 
out of balance, also form couples. A system of rotating masses is in dynamic balance 
when there does not exist any resultant centrifugal force as well as resultant couple.  
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CASE 1.  
BALANCING OF A SINGLE ROTATING MASS BY A SINGLE 
MASS ROTATING IN THE SAME PLANE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a disturbing mass m1 which is attached to a shaft rotating at ω rad/s. 
Let 

 
r1  radius of rotation of the mass m1  

 distancebetweenthe axis of rotationof the shaft and the centreof gravity of the 
massm1

 

The centrifugal force exerted by mass m1  on the shaft is given by, 

 

Fc1 = m1 ω 2 r1 − − − − − − − − − − − − − − − − − −(1) 
 

This force acts radially outwards and produces bending moment on the shaft. In order to 
counteract the effect of this force Fc1 , a balancing mass m2 may be attached in the same 
plane of rotation of the disturbing mass m1 such that the centrifugal forces due to the two 
masses are equal and opposite.  
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Let, 

 
r2  radius of rotation of the mass m2  

 distancebetweenthe axis of rotationof the shaft and the centreof gravity of 
themassm2

 

Therefore the centrifugal force due to mass m2  will be, 
 

Fc2 =m2 ω
2 r2 − − − − − − − − − − − − − − − − − −(2) 

 
Equating equations (1) and (2), we get 

 
F

c1 

=F
c2 

m1 ω2 r1 = m2 ω2 r2 or m1 r1 = m2 r2 − − − − − − − − − − − − − − − −(3) 

 
The product m 2  r2 can be split up in any convenient way. As for as possible the radius 
of rotation of mass m2 that is r2 is generally made large in order to reduce the balancing 
mass m2. 

 

 
CASE 2:  
BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATING 
IN DIFFERENT PLANES. 

 
There are two possibilities while attaching two balancing masses:  

1. The plane of the disturbing mass may be in between the planes of the two 
balancing masses.  

2. The plane of the disturbing mass may be on the left or right side of two planes 
containing the balancing masses. 

 
In order to balance a single rotating mass by two masses rotating in different planes 
which are parallel to the plane of rotation of the disturbing mass i) the net dynamic force 
acting on the shaft must be equal to zero, i.e. the centre of the masses of the system must 
lie on the axis of rotation and this is the condition for static balancing ii) the net couple 
due to the dynamic forces acting on the shaft must be equal to zero, i.e. the algebraic sum 
of the moments about any point in the plane must be zero. The conditions i) and ii) 
together give dynamic balancing.  
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CASE 2(I): 

 
THE PLANE OF THE DISTURBING MASS LIES IN BETWEEN THE PLANES 
OF THE TWO BALANCING MASSES.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider the disturbing mass m lying in a plane A which is to be balanced by two 
rotating masses m1 and m2 lying in two different planes M and N which are parallel to 
the plane A as shown. 

 
Let r, r1 and r2 be the radii of rotation of the masses in planes A, M and N respectively. 
Let L1, L2 and L be the distance between A and M, A and N, and M and N 
respectively. Now,  
The centrifugal force exerted by the mass m in plane A will be, 

 

Fc =m ω2 r − − − − − − − − − − − − − − − − − −(1) 
 

Similarly, 
The centrifugal force exerted by the mass m1 in plane M will be, 

 
Fc1 =m1 ω

2 r1 − − − − − − − − − − − − − − − − − −(2)  
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And the centrifugal force exerted by the mass m2 in plane N will be, 
 

Fc2 =m2 ω
2 r2 − − − − − − − − − − − − − − − − − −(3) 

 
For the condition of static balancing, 

 

Fc = Fc1 + Fc2  
or mω2 r = m1 ω2 r1 + m2 ω2 r2 

 
i.e. mr = m1 r1 + m2 r2 − − − − − − − − − − − − − − − −(4) 

 
Now, to determine the magnitude of balancing force in the plane ‘M’ or the dynamic 
force at the bearing ‘O’ of a shaft, take moments about ‘ P ’ which is the point of 
intersection of the plane N and the axis of rotation. 

 
Therefore, 

 

Fc1 xL= Fc xL2       
or m ω2 r x L = mω2 r xL 

2 
  

 1 1      

Therefore,       

m r L = mrL  or m r = mr L2 −−−−−−−−(5) 
2 

 

1 1  1 1  L  
        

 
Similarly, in order to find the balancing force in plane ‘N’ or the dynamic force at the 
bearing ‘P’ of a shaft, take moments about ‘ O ’ which is the point of intersection of the 
plane M and the axis of rotation. 

 
Therefore, 

 

Fc2 xL= Fc xL1       

or m ω2 r x L = mω2 r xL 
1 

  
 2 2      

Therefore,       

m r L = mrL  or m r = mr
L

1 −−−−−−−−(6) 
1 

 

2 2  2 2  L  
        

 
For dynamic balancing equations (5) or (6) must be satisfied along with equation (4).  



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
 
 

 
CASE 2(II): 

 
WHEN THE PLANE OF THE DISTURBING MASS LIES ON ONE END OF THE 
TWO PLANES CONTAINING THE BALANCING MASSES.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For static balancing, 
 

Fc1 = Fc + Fc2  
or m1 ω

2 r1 =mω2 r + m2 ω
2 r2  

i.e. m1 r1 = mr+ m2 r2 − − − − − − − − − − − − − − − −(1) 
 

For dynamic balance the net dynamic force acting on the shaft and the net couple due to 
dynamic forces acting on the shaft is equal to zero.  
To find the balancing force in the plane ‘M’ or the dynamic force at the bearing ‘O’ of a 
shaft, take moments about ‘P’. i.e.  
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Fc1 xL= Fc xL2       
or m ω2 r x L = mω2 r xL 

2 
  

 1 1      

Therefore,       

m r L = mrL  or m r = mr L2 −−−−−−−−(2) 
2 

 

1 1  1 1  L  
        

 
Similarly, to find the balancing force in the plane ‘N’ , take moments about ‘O’, i.e., 

 
Fc2 xL= Fc xL1       
or m ω2 r x L = mω2 r xL 

1 
  

 2 2      

Therefore,       

m r L = mrL  or m r = mr L1 −−−−−−−−(3) 
1 

 

2 2  2 2  L  
        

 
CASE 3: 
BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a rigid rotor revolving with a constant angular velocity ω rad/s. A number of 
masses say, four are depicted by point masses at different radii in the same transverse 
plane.  
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If m1, m2, m3 and m4 are the masses revolving at radii r1, r2, r3 and r4 respectively in the 
same plane. 
The centrifugal forces exerted by each of the masses are Fc1, Fc2, Fc3 and Fc4 respectively. 
Let F be the vector sum of these forces. i.e. 

 

F =Fc1 +Fc2 +Fc3 + Fc4 
 

=m1 ω
2 r1 + m2 ω

2 r2 + m3 ω
2 r3 + m4 ω

2 r4 − − − − − − − − − (1) 
 

The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F 
is not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight) 
of mass ‘m’ at radius ‘r’ to balance the rotor so that, 

 
m1 ω2 r1 + m2 ω2 r2 + m3 ω2 r3 + m4 ω2 r4 + m ω2 r = 0 − − − − − − − − − (2) 

 
or 

 
m1 r1 + m2 r2 + m3 r3 + m4 r4 + m r = 0 − − − − − − − − − − − − − − − −  (3) 

 
The magnitude of either ‘m’ or ‘r’ may be selected and the other can be calculated. In 

general, if ∑m i ri is the vector sum of m1 r1 , m 2 r2 , m 3 r3 , m 4 r4 etc, then, 
 

∑mi ri + mr= 0− − − − − − − −(4) 
 

 
The above equation can be solved either analytically or graphically. 

 
1. Analytical Method: 

 
Procedure: 

Step 1: Find out the centrifugal force or the product of mass and its radius of rotation  
exerted by each of masses on the rotating shaft, since ω 2 is same for each mass, 
therefore the magnitude of the centrifugal force for each mass is proportional to the 
product of the respective mass and its radius of rotation.  
Step 2: Resolve these forces into their horizontal and vertical components and find their 
sums. i.e., 

 
Sum of the horizontal components  

n 

= ∑miri cos θi = m1r1 cos θ1 + m2r2 cos θ2 + m3r3 cos θ3 + − − − − − − − − 
i1 

 
Sumof the vertical components  

n 

= ∑miri sin θi = m1r1 sin θ1 + m2r2 sin θ2 + m3r3 sin θ3 + − − − − − − − − 
i1  
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Step 3: Determine the magnitude of the resultant centrifugal force  
 

n 
2 

n 
2 

R

     ∑mrii cos θi 


   ∑mrii sinθi 

i1  i1  
 

Step 4: If θ  is the angle, which resultant force makes with the horizontal, then 
 

n 

∑
m

i

r
i 
sin θ

i 

tanθ  in
1 

 
∑

m
i

r
i 
cos θ

i 
i1 

 
Step 5: The balancing force is then equal to the resultant force, but in opposite direction. 
Step 6: Now find out the magnitude of the balancing mass, such that 

 

R=mr 
 

Where, m = balancing mass and r = its radius of rotation 
 

2. Graphical Method: 
Step 1: 
Draw the space diagram with the positions of the several masses, as shown. 

 
Step 2:  
Find out the centrifugal forces or product of the mass and radius of rotation exerted by 
each mass. 

 
Step 3:  
Now draw the vector diagram with the obtained centrifugal forces or product of the 
masses and radii of rotation. To draw vector diagram take a suitable scale. 
Let ab, bc, cd, de represents the forces Fc1, Fc2, Fc3 and Fc4 on the vector diagram. 
Draw ‘ab’ parallel to force Fc1 of the space diagram, at ‘b’ draw a line parallel to force 
Fc2. Similarly draw lines cd, de parallel to Fc3 and Fc4 respectively. 

 
Step 4:  
As per polygon law of forces, the closing side ‘ae’ represents the resultant force in 
magnitude and direction as shown in vector diagram. 

 

 
Step 5: 
The balancing force is then , equal and opposite to the resultant force. 

 
Step 6:  
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Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ), 
such that, 

 

Fc mω2 r  
or 

 
mrresultantofm1 r1 ,m2 r2 ,m3 r3 andm4 r4 

 
CASE 4: 

 
BALANCING OF SEVERAL MASSES ROTATING IN DIFFERENT PLANES 

 
When several masses revolve in different planes, they may be transferred to a reference 
plane and this reference plane is a plane passing through a point on the axis of rotation 
and perpendicular to it.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When a revolving mass in one plane is transferred to a reference plane, its effect is to 
cause a force of same magnitude to the centrifugal force of the revolving mass to act in 
the reference plane along with a couple of magnitude equal to the product of the force 
and the distance between the two planes.  
In order to have a complete balance of the several revolving masses in different planes, 

1. the forces in the reference plane must balance, i.e., the resultant force must be zero and  
2. the couples about the reference plane must balance i.e., the resultant couple must be zero. 

 
A mass placed in the reference plane may satisfy the first condition but the couple 
balance is satisfied only by two forces of equal magnitude in different planes. Thus, in 
general, two planes are needed to balance a system of rotating masses.  
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Example: 
Consider four masses m1, m2, m3 and m4 attached to the rotor at radii r1, r2, r3 and r4 
respectively. The masses m1, m2, m3 and m4 rotate in planes 1, 2, 3 and 4 respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Position of planes of masses 
 

Choose a reference plane at ‘O’ so that the distance of the planes 1, 2, 3 and 4 from ‘O’ 
are L1, L2 , L3 and L4 respectively. The reference plane chosen is plane ‘L’. Choose 
another plane ‘M’ between plane 3 and 4 as shown. 

 

Plane ‘M’ is at a distance of Lm from the reference plane ‘L’. The distances of all the 
other planes to the left of ‘L’ may be taken as negative( -ve) and to the right may be taken 
as positive (+ve). 

 

The magnitude of the balancing masses mL and mM in planes L and M may be obtained 
by following the steps given below. 

 

 
Step 1:  
Tabulate the given data as shown after drawing the sketches of position of planes of 
masses and angular position of masses. The planes are tabulated in the same order in 
which they occur from left to right.  
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   Centrifugal Distance 
Couple/ ω 

2 
Plane Mass (m) Radius (r) force/ω

2 from Ref.  

1 2 3 (m r) plane ‘L’ (L) (m r L)  
6  

   4 5  
     

1 m1 r1 m1 r1 - L1 - m1 r1 L1 
L mL rL mL rL 0 0  
2 m2 r2 m2 r2 L2 m2 r2 L2  
3 m3 r3 m3 r3 L3 m3 r3 L3  
M mM rM mM rM LM mM rM LM 
4 m4 r4 m4 r4 L4 m4 r4 L4   

 
 

Step 2:  
Construct the couple polygon first. (The couple polygon can be drawn by taking a 
convenient scale)  
Add the known vectors and considering each vector parallel to the radial line of the mass 
draw the couple diagram. Then the closing vector will be ‘mM rM LM’.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The vector d ’o’ on the couple polygon represents the balanced couple. Since the 
balanced couple CM is proportional to mM rM LM , therefore,  
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C 
M 
m r L 

M 
  vector d' o' 

 M M    

or m vector d' o' 
 

 

  M    rM LM       

 

From this the value of mM  in the plane M can be determined and the angle of inclination 
φ of this mass may be measured from figure (b). 

 
Step 3:  
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors along with ‘mM rM’. The closing vector will be ‘mL 
rL’. This represents the balanced force. Since the balanced force is proportional to ‘mL 
rL’ ,  

mL rL   vector eo 

or m  vector eo  
 

  L  rL     

From  this  the  balancing  mass  mL    can  be  obtained  in  plane  ‘L’  and  the  angle  of 
inclination of this mass with the horizontal may be measured from figure (b). 

 

Problems and solutions 
Problem 1.  
Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The 
masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40 
mm, 50 mm, 60 mm and 30 mm. The angular position of the masses B, C and D are 60

0
 , 

135
0
 and 270

0
 from mass A. Find the magnitude and position of the balancing mass at a 

radius of 100 mm. 
 

Solution: 
Given: 

 

Mass(m) Radius(r) Centrifugal force/ω
2 

Angle( θ ) (m r) kg m 
kg-m    

     

mA = 12 kg rA = 0.04 m mArA = 0.48 kg-m θ  = 00 
(reference mass)    A  

     
      

mB = 10 kg rB = 0.05 m mBrB = 0.50 kg-m θ B =600 
     

      

mC = 18 kg rC = 0.06 m mCrC = 1.08 kg-m θ C =1350 
     
      

mD = 15 kg rD = 0.03 m mDrD = 0.45 kg-m θ D = 2700 
     
       

 
To determine the balancing mass ‘m’ at a radius of r = 0.1 m. 

 
The problem can be solved by either analytical or graphical method.  
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Analytical Method: 
 

Step 1:  
Draw the space diagram or angular position of the masses. Since all the angular position 
of the masses are given with respect to mass A, take the angular position of mass A as θA 
= 00 .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 

 
Step 2:  
Resolve the centrifugal forces horizontally and vertically and find their sum. 
Resolving mArA, mBrB, mCrC and mDrD horizontally and taking their sum gives, 

 
n 

∑miri cos θi =mArAcosθA + mBrBcosθB + mCrCcosθC + mDrDcosθD 
i1  

= 0.48 x cos 00 + 0.50 x cos 600 + 1.08 x cos1350 + 0.45 x cos 2700 
 

= 0.48+ 0.25+(−0.764)+ 0= − 0.034 kg− m − − − − − − − − − (1) 
 
 
 

Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives,  
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n 

∑miri sin θi = mArAsinθA + mBrBsinθB + mCrCsinθC + mDrDsinθD 
i1  

= 0.48 x sin 00 + 0.50 x sin 600 + 1.08 x sin1350 + 0.45 x sin2700 
 

= 0+ 0.433+ 0.764+ (−0.45)= 0.747kg− m − − − − − − − − − (2) 
 
 
 

 
Step 3: 
Determine the magnitude of the resultant centrifugal force  

 

n 
2 

n 
2 

R
=
     ∑mrii cos θi 

+
   ∑mrii sin θi 

i1  i1   

= −0.0342+0.7472=0.748kg−m 
 

Step 4:  
The balancing force is then equal to the resultant force, but in opposite direction. Now 
find out the magnitude of the balancing mass, such that 

 
R=mr = 0.748kg− m 

Therefore, m= 
R

 = 
0.748

=7.48kg Ans  
r 0.1 

 
Where, m = balancing mass and r = its radius of rotation 

 
Step 5: 
Determine the position of the balancing mass ‘m’. 
If θ  is the angle, which resultant force makes with the horizontal, then 

 
 n       

 ∑
m

i

r
i 
sinθ

i  0.747  
tanθ= i1  = = −21.97  

n    

    

− 0.034 
 

 ∑
m

i

r
i 
cos θ

i   
 i1       

and θ= − 87.4 0 or 92.60  

Remember   ALL   STUDENTS TAKE COPY   i.e.   in   first   quadrant   all   angles
( sin θ , cos θ  and tan θ ) are positive, in second quadrant only  sin θ is positive, in

third quadrant only tan θ   is positive and in fourth quadrant only cos θ is positive. 

 
Since numerator is positive and denominator is negative, the resultant force makes with 
the horizontal, an angle (measured in the counter clockwise direction)  

θ = 92.6 0  
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The balancing force is then equal to the resultant force, but in opposite direction. 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 

angle of inclination
 with the

 horizontal is,
 θ = 87.4 0

 angle measured
 in the 

M  
clockwise direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graphical Method: 
 

Step 1:  
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 

 
Draw the space diagram or angular position of the masses taking the actual angles( Since 
all angular position of the masses are given with respect to mass A, take the angular  
position of mass A as θA  = 00 ).  
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Step 2:  
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors as follows.  
Draw a line ‘ab’ parallel to force FCA (or the product mArA to a proper scale) of the 
space diagram. At ‘b’ draw a line ‘bc’ parallel to FCB (or the product mBrB). Similarly 
draw lines ‘cd’, ‘de’ parallel to FCC (or the product mCrC) and FCD (or the product 
mDrD) respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude 
and direction as shown on the vector diagram. 

 
Step 3: 
The balancing force is then equal to the resultant force, but in opposite direction. 

 
Rmr 

Therefore, m 
R

  7.48 kg Ans  
r 

 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 
angle of inclination with the horizontal is, θM = 87.4 0 angle measured in the clockwise 
direction.  
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Problem 2:  
The four masses A, B, C and D are 100 kg, 150 kg, 120 kg and 130 kg attached to a shaft 
and revolve in the same plane. The corresponding radii of rotations are 22.5 cm, 17.5 cm,  

25 cm and 30 cm and the angles measured from A are 45
0
, 120

0
 and 255

0
. Find the 

position and magnitude of the balancing mass, if the radius of rotation is 60 cm. 
 

Solution:      

Analytical Method:      

Given:      
       
 Mass(m) Radius(r) Centrifugal force/ω

2 

Angle( θ )  (m r)  kg m  kg-m    
      

 mA = 100 kg rA = 0.225 m mArA = 22.5 kg-m θ  = 00 
 (reference mass)    A  

      
       

 mB = 150 kg rB = 0.175 m mBrB = 26.25 kg-m θ B = 450 
      
       

 mC = 120 kg rC = 0.250 m mCrC = 30  kg-m θ C =1200 
      
       

 mD = 130 kg rD = 0.300 m mDrD = 39 kg-m θ D = 2550 
      
     

 m =? r = 0.60  θ  = ? 
        

 
Step 1:  
Draw the space diagram or angular position of the masses. Since all the angular position 
of the masses are given with respect to mass A, take the angular position of mass A as θA 
= 00 . 

 
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated.  
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Step 2:  
Resolve the centrifugal forces horizontally and vertically and find their sum. 

Resolving mArA, mBrB, mCrC and mDrD horizontally and taking their sum gives, 

 
n 

∑
m

 i 
r

i  
cos

 
θ

i   
=

 
m

 A 
r

A 
cosθ

A   
+

 
m

 B 
r

B 
cosθ

B  
+

 
m

C 
r

C 
cosθ

C  
+

 
m

 D 
r

D 
cosθ

D 
i 1  
= 22.5 x cos 00  +  26.25 x cos 450  +  30 x cos 1200  +  39 x cos 2550 

 
= 22.5 + 18.56 + (−15) + (−10.1) = 15.97 kg − m − − − − − − − − − 
(1) 

 
 
 

Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives, 
 

n 

∑m i ri  sin θi   = m A rA sin θA   + m B rB sinθB  + mC rC sinθC  + m D rD sinθD 
i 1  

=22.5 x sin 00  +  26.25 x sin 450  +  30 x sin 1200  +  39 x sin 2550 
 

= 0 + 18.56 + 25.98 + (−37.67) = 6.87 kg − m − − − − − − − − 
− (2) 

 
 
 

Step 3: 
Determine the magnitude of the resultant centrifugal force  

n  2 n  2
R =∑m r cos θ +   ∑m r sin θ 

i 1 i   i i i 1 i   i i  
= 15.972+6.872=17.39 kg−m 

 
Step 4:  
The balancing force is then equal to the resultant force, but in opposite direction. Now 
find out the magnitude of the balancing mass, such that 

 
R = m r = 17.39 kg − m 

Therefore, m = 
R

 = 
17.39

 = 28.98 kg Ans  
r 0.60 

 
Where, m = balancing mass and r = its radius of rotation 

 
Step 5: 
Determine the position of the balancing mass ‘m’. 
If θ  is the angle, which resultant force makes with the horizontal, then  
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 n     

 ∑mi ri sin θi 6.87 
tan θ i 1    0.4302 n  

15.97 ∑
m

i 
r

i cos θi 
 

   
i 1  

and θ  23.28 0 

 
 
 

The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 
angle of inclination with the horizontal is, θ = 203.28 0 angle measured in the 

 
counter clockwise direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graphical Method: 
 

Step 1:  
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated.  
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Step 2: 
 

Draw the space diagram or angular position of the masses taking the actual angles (Since 
all angular position of the masses are given with respect to mass A, take the angular  
position of mass A as θA  = 00 ).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Step 3:  
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors as follows. 

 

 
Draw a line ‘ab’ parallel to force FCA (or the product mArA to a proper scale) of the 
space diagram. At ‘b’ draw a line ‘bc’ parallel to FCB (or the product mBrB). Similarly 
draw lines ‘cd’, ‘de’ parallel to FCC (or the product mCrC) and FCD (or the product 
mDrD) respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude 
and direction as shown on the vector diagram. 

 
Step 4: 
The balancing force is then equal to the resultant force, but in opposite direction. 

 
Rmr 

Therefore, m 
R

  29kg Ans  
r 

 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 
angle of inclination with the horizontal is, θ = 203 0 angle measured in the counter 

 
clockwise direction.  
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Problem 3: 
A rotor has the following properties. 

 

Mass magnitude Radius 
   

Angle 
Axial distance 

   from first mass           
        

1 9 kg 100 mm θ A = 00 
- 

         
         

2 7 kg 120 mm θ B  =600 
160 mm 

         
         

3 8 kg 140 mm θ C =1350 
320 mm 

        
          

4 6 kg 120 mm θ D = 2700 
560 mm 

        
            

 
If the shaft is balanced by two counter masses located at 100 mm radii and revolving in 
planes midway of planes 1 and 2, and midway of 3 and 4, determine the magnitude of the 
masses and their respective angular positions. 

 
Solution: 

 
Analytical Method: 

 
    Centrifugal Distance 

Couple/ 
ω2 Angle 

Plane 
Mass (m) Radius (r)  force/ω

2 from Ref.  
θ 

kg m 
  

(m r) plane ‘M’ 
(m r L) 

1   kg-m
2 

  
 2 3   kg-m m 6  7      4 5  
        

1 9.0 0.10 m1 r1 = 0.9 -0.08 -0.072 0
0 

M mM = ? 0.10 mM rM  = 0.1 mM 0 0  θM =? 
         

2 7.0 0.12 m2 r2 = 0.84 0.08 0.0672 60
0 

3 8.0 0.14 m3 r3 = 1.12 0.24 0.2688 135
0 

N mN = ? 0.10 mN rN  = 0.1 mN 0.36 mN rN lN = 0.036 mN θN =? 
         

4 6.0 0.12 m4 r4 = 0.72 0.48 0.3456 270
0 

 
 

For dynamic balancing the conditions required are, 
 

∑mr 
 

 mM rM 

 
 mN rN 

 
0 ----------(I) 

 
for force balance 

 

∑mrl

 
 
mN rN lN 

 
 
 0 --------------(II) 

 
 
for couple balance  
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Step 1: 
Resolve the couples into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 

∑mrl cosθ + mN rN lN cosθN = 0 Onsubstitution we 
get 

 
− 0.072 cos 00 + 0.0672 cos 600 + 0.2688cos1350 

 
+ 0.3456cos2700 + 0.036 mN cosθN = 0 i.e. 

0.036 mN cosθN = 0.2285− − − − − (1) 
 

Sum of the vertical components gives, 
 

∑mrl sin θ+ mN rN lN sinθN = 0 On substitution we 
get 

 
− 0.072 sin 00 + 0.0672 sin 600 + 0.2688sin1350 

 
+ 0.3456 sin2700 + 0.036 mN sinθN = 0 i.e. 0.036 mN sin θN = 

0.09733− − − − − (2) 
 

Squaring and adding (1) and (2), we get  



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
 
 

mN rN lN = 0.22852+0.097332 

 
i.e., 0.036mN = 0.2484 

0.2484 

Therefore, mN = = 6.9kg Ans  
 
 

Dividing (2) by (1), we get   

tanθ = 0.09733 and θ =23.070 
 

N 0.2285 N 

 
Step 2:  
Resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 

∑mr cosθ+ mM rM cosθM + mN rN cosθN = 0 
 

On substitution we get 
 

0.9 cos 00 + 0.84 cos 600 +1.12 cos1350 + 0.72 cos2700 + 

mM rM cosθM + 0.1x6.9xcos23.070 = 0 

i.e. mM rM cosθM = −1.1629 − − − − − (3) 
 

Sum of the vertical components gives, 
 

∑mr sin θ+ mM rM sin θM + mN rN sinθN = 0 
 

On substitution we get 
 

0.9 sin00 + 0.84 sin 600 +1.12 sin1350 + 0.72sin2700 + 

mM rM sinθM + 0.1x6.9xsin23.070 = 0 

i.e. mM rM sinθM = −1.0698 − − − − − (4) 
 

Squaring and adding (3) and (4), we get  
 

mM rM = −1.16292+−1.06982 

 
i.e., 0.1mM =1.580  

Therefore, m = 1.580 =15.8 kg Ans 
 

 M 0.1   

Dividing (4) by (3), we get     

tanθ =− 1.0698  and θ =222.610 Ans 
− 1.1629 M  M   
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Graphical Solution:  

REDDY ENGINEERING COLLEGE(Autonomous) 
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Problem 4: 
The system has the following data.  

 

m =1.2 kg r = 1.135 m @ ∠ 113.40 

1  1  
   

m =1.8 kg r  = 0.822 m @ ∠ 48.80 

1  2  
    

m = 2.4 kg r = 1.04 m @ ∠ 251.40 

1  3  
     

 
The distances of planes in metres from plane A are: 

 

l1 = 0.854, l2 = 1.701,l3 = 2.396,lB = 3.097 
 

Find the mass-radius products and their angular locations needed to dynamically balance 
the system using the correction planes A and B. 

 
Solution: Analytical Method  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Centrifugal Distance 
Couple/ 

ω2 Angle 

Plane 
Mass (m) Radius (r) force/ω

2 from Ref.  
θ 

kg m (m r) plane ‘A’ 
(m r L) 

1 kg-m
2 

  
 2 3 kg-m m 6  7    4 5  
      
        

A mA rA mA rA  =? 0 0  θA =? 
       

1 1.2 1.135 1.362 0.854 1.163148 113.4
0 

2 1.8 0.822 1.4796 1.701 2.5168 48.8
0 

3 2.4 1.04 2.496 2.396 5.9804 251.4
0 

B mB rB mB rB  =? 3.097 3.097 mB rB θB =? 
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Step 1: 
 

Resolve the couples into their horizontal and vertical components and find their sums. 
 

Sum of the horizontal components gives, 
 

∑mrl cosθ +  mB rB lB cosθB = 0 
 

Onsubstitution we get 
 

1.163148 cos113.4 0 + 2.5168 cos 48.80 +5.9804 cos251.40 

 
+ 3.097 mB rB cosθB = 0  

i.e. m r cosθ  = 0.71166 −−−−−(1) 
  

B B  B 3.097  
 

Sum of the vertical components gives, 
 

∑mrl sinθ +  mB rB lB sinθB = 0 
 

Onsubstitution we get 
 

1.163148 sin113.4 0 + 2.5168 sin 48.80 +5.9804 sin251.40 + 

3.097 mB rB sinθB = 0 

i.e. mB rB sinθB = 
2.7069

− − − − − (2)  
 
 

Squaring and adding (1) and (2), we get  
 

 0.71166 2 2.7069 2 

mB rB = 

 + 

 

3.097 3.097      
= 0.9037kg− m 

 
Dividing (2) by (1), we get    

tanθ  2.7069 and θ  75.270 Ans 
 

B 0.71166 B  
 

 
Step 2:  
Resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives,  

3.097 
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∑ mr cosθ+ mA rA cosθA + mB rB cosθB 
On substitution we get  
1.362 cos113.4 0 + 1.4796 cos 48.80 

 
+ mA rA cosθA + 0.9037 cos75.270 = 0 

Therefore 

 
 
= 0 
 
 
+ 2.496 cos251.40 

 
mA rA cosθA = 0.13266− − − − − − − − − (3) 

 
Sum of the vertical components gives, 

 

∑ mr sinθ+ mA rA sinθA + mB rB sinθB = 0 
On substitution we get  
1.362 sin113.4 0 + 1.4796 sin 48.80 + 2.496 sin 251.40 

 
+ mA rA sinθA + 0.9037 sin75.270 = 0 

Therefore 
 

mA rA sinθA = − 0.87162− − − − − − − − − (4) 
 

Squaring and adding (3) and (4), we get  
 

mA rA = 0.132662+−0.871622 

 
= 0.8817 kg− m 

 
Dividing (4) by (3), we get 

 

tanθ  = − 0.87162 and θ  = − 81.350 Ans 
A  A  0.13266   

      

 

 
Problem 5:  
A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200 
kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes 
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks 
measured anticlockwise are A to B 45

0
, B to C 70

0
 and C to D 120

0
. The balancing 

masses are to be placed in planes X and Y. The distance between the planes A and X is 
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing 
masses revolve at a radius of 100 mm, find their magnitudes and angular positions.  
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Graphical solution: 
 

Let, mX be the balancing mass placed in plane X and mY be the balancing mass placed in 
plane Y which are to be determined. 

 
Step 1: 
Draw the position of the planes as shown in figure (a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let X be the reference plane (R.P.). The distances of the planes to the right of the plane X 
are taken as positive (+ve) and the distances of planes to the left of X plane are taken as 
negative(-ve). The data may be tabulated as shown 

 
Since the magnitude of the centrifugal forces are proportional to the product of the mass 
and its radius, the product ‘m r’ can be calculated and tabulated. Similarly the magnitude 
of the couples are proportional to the product of the mass , its radius and the axial 
distance from the reference plane, the product ‘m r l’ can be calculated and tabulated as 
shown.  
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   Centrifugal Distance 
Couple/ 

ω
2 

Angle 

Plane 
Mass Radius (r) force/ω

2 from Ref.  
θ 

(m) kg m 
 

(m r) plane ‘X’ 
(m r L) 

1  kg-m
2 

  
 2 3  kg-m m 6  7     4 5  
       

A 200 0.08 mA rA = 16 -0.10 -1.60  - 

X mX =? 0.10 mX rX  = 0.1 mX 0 0  θX =? 
         

B 300 0.07 mB rB = 21 0.20 4.20  A to B 45
0 

C 400 0.06 mC rC = 24 0.30 7.20  B to C 70
0 

Y mY =? 0.10 mY rY  = 0.1 mY 0.40 mY rY lY = 0.04 mY θY =? 
        

D 200 0.08 mD rD  = 16 0.60 9.60  C to D 120
0 

 
 

Step 2: 
 

Assuming the mass A as horizontal draw the sketch of angular position of masses as 
shown in figure (b). 

 
Step 3:  
Draw the couple polygon to some suitable scale by taking the values of ‘m r l’ (column 
no. 6) of the table as shown in figure (c).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Draw line o’a’ parallel to the radial line of mass mA. 
At a’ draw line a’b’ parallel to radial line of mass mB. 
Similarly, draw lines b’c’, c’d’ parallel to radial lines of masses mC and mD  respectively. 
Now, join d’ to o’ which gives the balanced couple.  
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We get,  0.04 mY = vector d'o'=7.3kg− m2 

or mY =182.5 kg Ans 
 

Step 4: 
To find the angular position of the mass mY draw a line omY in figure (b) parallel to d’o’ 
of the couple polygon. 

 

By measurement we get θY 120 in the clockwise direction from mA. 
 

Step 5:  
Now draw the force polygon by considering the values of ‘m r’ (column no. 4) of the 
table as shown in figure (d).  
Follow the similar procedure of step 3. The closing side of the force polygon i.e. ‘e o’ 
represents the balanced force. 

 
mX rX = vectoreo=35.5kg− m 

 
or mX =355kg Ans 

 
Step 6: 
The angular position of mX is determined by drawing a line omX parallel to the line ‘e o’ 
of the force polygon in figure ( b). From figure (b) we get,  
θ X 1450 , measured clockwise from mA. Ans 

 
Problem 6: 
A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 125 mm, 200  
mm and 150 mm respectively. The planes in which the masses revolve are spaced 600 
mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the 
required mass A and relative angular settings of the four masses so that the shaft shall be 
in complete balance.  
Solution: 

 
Graphical Method: 

 
Step 1: 
Let, mA be the balancing mass placed in plane A which is to be determined along with 
the relative angular settings of the four masses.  
Let A be the reference plane (R.P.). 
Assume the mass B as horizontal 
Draw the sketch of angular position of mass mB (line omB ) as shown in figure (b). The 
data may be tabulated as shown.  
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Mass Radius (r) 

Centrifugal force/ω
2 

Distance Couple/ ω
2 

Angle 
Plane  (m r) from Ref. (m r L) θ 

(m) kg m 
 

plane ‘A’ 1  kg-m kg-m
2 

 
 2 3  4 m 6 7     5        

A 
mA= ? 0.1 mA rA = 0.1 mA 0 0 θA =? (R.P.)        

B 10 0.125 mB rB = 1.25 0.6 0.75 θB =0 
        

C 5 0.2 mC rC = 1.0 1.2 1.2 θC =? 
       

D 4 0.15 mD rD  = 0.6 1.8 1.08 θD =? 
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Step 2:  
To determine the angular settings of mass C and D the couple polygon is to be drawn first 
as shown in fig (c). Take a convenient scale 

 
 

Draw a line o’b’ equal to 0.75 kg-m
2
 parallel to the line omB. At point o’ and b’ draw 

vectors o’c’ and b’c’ equal to 1.2 kg-m
2
 and 1.08 kg-m

2
 respectively. These vectors 

intersect at point c’. 
 

For the construction of force polygon there are four options. 
 

Any one option can be used and relative to that the angular settings of 
mass C and D are determined.  
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Step 3: 

 

Now in figure (b), draw lines omC and omD parallel to o’c’ and b’c’ respectively. 
 

From measurement we get, 
 
 
 
 

θD  1000 and  θC  2400  Ans 
 

Step 4: 
In order to find mA and its angular setting draw the force polygon as shown in figure (d).  
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mA rA = 0.70kg-m    

Therefore, mA = 0.70 =7kg Ans 
 

   r 
   A 

 
Step 5: 

 

Now draw line omA parallel to od of the force polygon. By measurement, we get, 
 

θA  1550 Ans 
 

Problem 7:  
A shaft carries three masses A, B and C. Planes B and C are 60 cm and 120 cm from A. 
A , B and C are 50 kg, 40 kg and 60 kg respectively at a radius of 2.5 cm. The angular 
position of mass B and mass C with A are 90

0
 and 210

0
 respectively. Find the 

unbalanced force and couple. Also find the position and magnitude of balancing mass 
required at 10 cm radius in planes L and M midway between A and B, and B and C. 

 
 Solution:            

 Case (i):            
         

  
Mass Radius (r) 

Centrifugal force/ω
2 

Distance Couple/ ω
2 

 Angle 
Plane  (m r) from Ref. (m r L)      θ 

(m) kg m 
 

plane ‘A’ 
     

1   kg-m kg-m
2 

      
  2 3  4 m 6      7      5      
             

A  50 0.025 mA rA = 1.25 0 0 θ   = 00 
(R.P.)          A  

            
            

B  40 0.025 mB rB = 1.00 0.6 0.6 θ B = 900 
            
            

C  60 0.025 mC rC = 1.50 1.2 1.8 θ C = 2100 
            
               

 
Analytical Method 

 
Step 1: 
Determination of unbalanced couple 
Resolve the couples into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 

∑mrl cosθ= 0.6 cos 90 0 + 1.8cos 2100 = −1.559− − − − − (1) 
 

Sum of the vertical components gives, 
 

∑mrlsinθ=0.6 sin900 + 1.8 sin2100 = −0.3− − − − − (2)  
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Squaring and adding (1) and (2), we get  
 

Cunbalanced = -1.5592+-0.32 

 
= 1.588 kg− m2 

 
Step 2: 
Determination of unbalanced force 

 
Resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 

∑mr cosθ=  1.25 cos 0 0 +1.0 cos 900 +1.5 cos2100 

 
=1.25+ 0+ (−1.299)= −0.049− − − − − − − − − (3) 

 
Sum of the vertical components gives, 

 

∑ mr sinθ = 1.25 sin 0 0 + 1.0 sin 900 +1.5 sin 2100  
= 0+1.0+(−0.75)= 0.25− − − − − − − − − (4) 

 
Squaring and adding (3) and (4), we get  

 

Funbalanced = -0.0492+0.252 

 
= 0.2548 kg− m 

 
Graphical solution:  
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b
’        

` 
         b  
           
         

1.50 

  
            

            
         

c      

1.8 
 

0.6 
   

        
         

       
o

’ 

Unbalanced force 

1.00        

     o
’       

         

1.25 
  

         
   

c
’ 

  

Unbalanced couple 
 

   o  a 
               

Force polygon 
Couple polygon 

 
Case (ii):  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To determine the magnitude and directions of masses mM and mL. 
 

Let, mL be the balancing mass placed in plane L and mM be the balancing mass placed in 
plane M which are to be determined. 

 
The data may be tabulated as shown.  
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   Centrifugal Distance 
Couple/ ω 

2 

Plane 
Mass Radius (r) force/ω

2 from Ref.  

(m) kg m (m r) plane ‘L’ 
(m r L)  

1 kg-m
2 

  
 2 3 kg-m m 6   
   4 5   

      

A 50 0.025 mA rA   = 1.25 -0.3 -0.375  

L 
mL = ? 0.10 0.1 mL 0 0 

  
(R.P.)   

       

B 40 0.025 mB rB   = 1.00 0.3 0.3   

M mM = ? 0.10 0.1 mM 0.6 0.06 mM  

C 60 0.025 mC rC   = 1.50 0.9 1.35   
         

 
 

Analytical Method: 
 

Step 1: 
Resolve the couples into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 

∑ mrl cosθ+ mM rM lM cosθM = 0 On 
substitution we get  

- 0.375 cos 0 0 + 0.3 cos 900 + 0.06 mM cosθM +1.35 cos 2100 = 0 i.e. -

0.375 + 0+ 0.06 mM cosθM + (−1.16913)= 0 

0.06 mM cosθM =1.54413 
1.54413 

mM cosθM = =25.74 − − − − − (1)  
 
 

Sum of the vertical components gives, 
 

∑ mrl sinθ+ mM rM lM sinθM = 0 On 
substitution we get  

- 0.375 sin 0 0 + 0.3 sin 900 + 0.06 mM sinθM +1.35 sin 2100 = 0 i.e. 0 + 

0.3+ 0.06 mM sinθM + (−0.675)= 0 

0.06 mM sinθM = 0.375  

m sinθ  = 0.375 =6.25 − − − − −(2) 
  

M M 0.06 
 

Squaring and adding (1) and (2), we get 

 
 
 
 

Angle 
θ 

 
7 

 
θA =00 

 
θ L  = ? 

 
θB =900  
θM =?  

θ C  = 2100  
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(m M cosθ M )2  (mM sinθ M )
2  (25.74)2  (6.25)2    701.61 

          

i.e. m2   701.61   and  m 
M 

 26.5 kg Ans 
  M           

 
Dividing (2) by (1), we get 

 

tanθ   6.25 and θ 13.650 Ans 
  

 M 25.74 M  
 

 
Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 
∑mr cosθ+ mL rL cosθL + mM rM cosθM = 0  
On substitution we get 

 
1.25 cos 0 0 + 0.1mL cosθL +1.0 cos 900 + 2.649 cos13.650 + 1.5cos 2100 = 0 

 
1.25+ 0.1mL cosθL + 0+ 2.5741+ (−1.299) = 0  
Therefore 

 
0.1mL cosθL + 2.5251 = 0  

− 2.5251 
and mL cosθL =  

=−25.251− − − − − − − − −(3) 0.1    

 
Sum of the vertical components gives, 

 

∑mr sinθ+ mL rL sinθL + mM rM sinθM = 0  
On substitution we get 

 
1.25 sin 0 0 + 0.1mL sinθL +1.0 sin 900 + 2.649 sin13.650 + 1.5sin 2100 = 0 

 
0+ 0.1mL sinθL + 1+ 0.6251+ (−0.75) = 0  
Therefore           

0.1mL sinθL + 0.8751 = 0    

and m sinθ  = − 0.8751 =−8.751−−−−−−−−−(4) 
L 

 

    L  0.1     
            

Squaring and adding (3) and (4), we get    

(m 
L 
cosθ )2  (m 

L 
sinθ )2   (-25.251)2  (-8.751)2   714.193

  L    L      

i.e. m2   714.193  and  m 
L 

 26.72 kg Ans 
  L            

 
Dividing (4) by (3), we get  
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tanθ  = − 8.751 and θ  =19.110 Ans L -25.251 L 
     

       

 

The balancing mass mL is at an angle 19.11
0
 + 180

0
 = 199.11

0
 measured in counter 

clockwise direction. 
 

Graphical Method:  
 
 

 
0.3 

 
 

1.35 0.375 
 
 
 

 

0.06 mM 

 
COUPLE  POLYGON  

 
 
 
 
 

0.1 mM 

 
1.5 

 
1.0 

0.1 mL 
 
 

1.25 
 

FORCE POLYGON  
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Problem 8: 
 

Four masses A, B, C and D are completely balanced. Masses C and D make angles of 90
0
 

and 210
0
 respectively with B in the same sense. The planes containing B and C are 300 

mm apart. Masses A, B, C and D can be assumed to be concentrated at radii of 360 mm,  
480 mm, 240 mm and 300 mm respectively. The masses B, C and D are 15 kg, 25 kg and 
20 kg respectively. Determine i) mass A and its angular position ii) position of planes A 
and D. 

 
Solution: Analytical Method 

 
Step 1:  
Draw the space diagram or angular position of the masses. Since the angular position of 
the masses C and D are given with respect to mass B, take the angular position of mass B  
as θ B = 00

.           
             

Tabulate the given data as shown.         
           

  
Mass Radius (r) 

Centrifugal force/ω
2 

Distance Couple/ ω
2 

  Angle 
Plane   (m r) from Ref. (m r L)     θ  

(m) kg m 
 

plane ‘A’ 
    

1   kg-m kg-m
2 

     
   2 3  4 m 6     7       5     
             

A  
mA= ? 0.36 mA rA = 0.36 mA 0 0 

 
θA =? (R.P.)   

             

B   15 0.48 mB rB = 7.2 lB = ? 7.2 lB  θB =0 
             

C   25 0.24 mC rC = 6.0 lC = ? 6.0 lC θ C = 900 
            
            

D   20 0.30 mD rD  = 6.0 lD = ? 6.0 lD θ D = 2100 
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Step 2: 
Mass mA be the balancing mass placed in plane A which is to be determined along with 
its angular position. 

 

Refer column 4 of the table. Since mA is to be determined ( which is the only unknown) ,resolve 
the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

 
∑ mr cos θ = m A  rA   cos θA  + mB  rB   cos θB  + mC  rC   cos θC  + mD  rD   cos θD  = 

0  
On substitution we get 

 
0.36 m A  cos θA  +  7.2 cos 00  + 6.0 cos 900  + 6.0 cos 2100   = 0  
Therefore 

 
0.36 m A  cos θA   = - 2.004 − − − − − − − − − (1) 

 
Sum of the vertical components gives, 

 

∑mr sin θ = mA rA sinθA + mB rB sinθB + mC rC sinθC + mD rD sinθD = 0 On 

substitution we get 
 

0.36 mA sinθA + 7.2 sin00 + 6.0 sin900 + 6.0 sin2100 = 0 Therefore 
 
 

0.36 mA sinθA = -3.0− − − − − − − − − (2) 
 

Squaring and adding (1) and (2), we get 
 

0.362 (mA )2 =(− 2.004)2 + (−3.0)2 = 13.016  13.016 

mA =   = 10.02 kg Ans 
 
 

Dividing (2) by (1), we get 
 

tanθ  = − 3.0 and Resutltant makes an angle =  56.26 0 
A -2.004   

     
The balancing mass A makes an angle of θA =236.260 Ans  
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Step 3: 
 

Resolve the couples into their horizontal and vertical components and find their sums. 
 

Sum of the horizontal components gives, 
 

∑ mr l cos 
θ

 
=

 m A  rA  l A  cos 
θ

A  
+

 mB  rB  lB  cos 
θ

B  
+

 mC  rC  lC  cos 
θ

C  
+

 m D  rD  l D  cos 
θ

D  
=

 0  
On substitution we get 

 
0 + 7.2 l B  cos 00  + 6.0 lC  cos 900  + 6.0 l D  cos 2100  = 0 

 
7.2 l B  − 5.1962 l D  = 0 - - - - - - - - - - - (3) 

 
Sum of the vertical components gives, 

 
∑ mr l sin θ = m A  rA  l A  sin θA  + mB  rB  l B  sin θB  + mC  rC  lC  sin θC  + m D  rD  l D  sin θD  = 0  
On substitution we get 

 
0 + 7.2 lB  sin 00  + 6.0 lC  sin 900  + 6.0 l D  sin 2100  = 0 

 
 
 
 

 

But from figure we have, lC  =  lB  + 0.3 
 

On substituting this in equation (4), we get 
 

6.0 ( l B  + 0.3) − 3 l D  = 0 
 

i.e. 6.0 l B  − 3 l D  = 1.8 - - - - - - - - - -(5) 
 

 
Thus we have two equations ( 3) and (5), and two unknowns l B 

, l D 7.2 lB − 5.1962 l D = 0 - - - - - - - - - - - (3) 

6.0 l B  − 3 l D = 1.8 - - - - - - - - - -(5)  
On solving the equations, we get 

 
l D  = − 1.353 mand  l B  = − 0.976 m 

 
As per the position of planes of masses assumed the distances shown are positive (+ ve ) 
from the reference plane A. But the calculated values of distances lB and lD are negative. 
The corrected positions of planes of masses is shown below.  
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BALANCING 

OF 
RECIPROCATING MASSES 

 
 
SLIDER CRANK MECHANISM: 

 
PRIMARY AND SECONDARY ACCELERATING FORCE: 

 
 

Acceleration of the reciprocating mass of a slider-crank mechanism is given by, 
 

ap   Acceleration of piston 
 cos 2 
r 2   cos 

 

(1)  
 

n 
 

  

Where n  
l 

 
r 

 
And, the force required to accelerate the mass ‘m’ is 

 
 2 cos 2   
F mr   cos   

 
 

i   

n 
 

     

mr 2 cos mr 2 
cos 2  (2) 

n       
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The first term of the equation (2) , i.e. mr 2 cos is called primary accelerating force  
 

the second term mr 2 
cos

 
2

 


 is called the secondary accelerating force.  
n 

 

Maximum value of primary accelerating force is mr 2 
 

mr 2 

And Maximum value of secondary accelerating force is  
n  

Generally, ‘n’ value is much greater than one; the secondary force is small compared to 
primary force and can be safely neglected for slow speed engines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig (a), the inertia force due to primary accelerating force is shown.  
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In Fig (b), the forces acting on the engine frame due to inertia force are shown. 
 

At ‘O’ the force exerted by the crankshaft on the main bearings has two components, 

horizontal F21
h

 and vertical F21
v
 . 

 

F21
h  is an horizontal force, which is an unbalanced shaking force. 

 

F21
v  and F41

v  balance each other but form an unbalanced shaking couple. 

 
The magnitude and direction of these unbalanced force and couple go on changing with 
angle θ. The shaking force produces linear vibrations of the frame in horizontal direction, 
whereas the shaking couple produces an oscillating vibration.  

The shaking force F21
h

 is the only unbalanced force which may hamper the smooth 

running of the engine and effort is made to balance the same.  
However it is not at all possible to balance it completely and only some modifications can 
be carried out. 

 
BALANCING OF THE SHAKING FORCE: 

 
Shaking force is being balanced by adding a rotating counter mass at radius ‘r’ directly 
opposite the crank. This provides only a partial balance. This counter mass is in addition 
to the mass used to balance the rotating unbalance due to the mass at the crank pin. This 
is shown in figure (c).  
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The horizontal component of the centrifugal force due to the balancing mass is mr 2 
cos and this is in the line of stroke. This component neutralizes the unbalanced 
reciprocating force. But the rotating mass also has a component mr 2 sin  
perpendicular to the line of stroke which remains unbalanced. The unbalanced force is 

zero at θ = 0
0
 or 180

0
 and maximum at the middle of the stroke i.e. θ = 90

0
. The 

magnitude or the maximum value of the unbalanced force remains the same i.e. equal to 
mr 2 . Thus instead of sliding to and fro on its mounting, the mechanism tends to jump 
up and down. 

To minimize the effect of the unbalance force a compromise is, usually made, is  
2

 of the  
3 

reciprocating mass is balanced or a value between 
1

 to 
3

 .  
2 4 

 
If ‘c’ is the fraction of the reciprocating mass, then 

 
The primary force  balanced by the mass  c mr ω 2 cos θ 

 
and 

 
The primary force unbalanced by the mass  (1 c) mr ω 2  cos θ 

 
Vertical  component of centrifuga l force which remains unbalanced  
 c m r ω 2  sin θ

 
In reciprocating engines, unbalance forces in the direction of the line of stroke are more 
dangerous than the forces perpendicular to the line of stroke. 

 

 
Resultant unbalanced force at any instant   

 (1c)mrω2cosθ2c mrω2sinθ2
 

The resultant unbalanced force is minimum when,  c  
1

2  
 

This method is just equivalent to as if a revolving mass at the crankpin is completely 
balanced by providing a counter mass at the same radius diametrically opposite to the 
crank. Thus if mP is the mass at the crankpin and ‘c’ is the fraction of the reciprocating  
mass ‘m’ to be balanced , the mass at the crankpin may be considered as cm mP which 

is to be completely balanced. 
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Problem 1:  
A single –cylinder reciprocating engine has a reciprocating mass of 60 kg. The crank 
rotates at 60 rpm and the stroke is 320 mm. The mass of the revolving parts at 160 mm 
radius is 40 kg. If two-thirds of the reciprocating parts and the whole of the revolving 
parts are to be balanced, determine the, (i) balance mass required at a radius of 350 mm 

and (ii) unbalanced force when the crank has turned 50
0
 from the top-dead centre. 

 
Solution: 

Given : m  mass of the reciprocating parts  60 kg N  
60 rpm, L  length of the stroke  320 mm mP  

40 kg, c  
2
3 , rc 350 mm 

 
(i) Balance mass required at a radius of 350 mm 

 
 

ω 
2 πN 


2 π x 60 

 2 π rad/s 
We have,  60  60    

r 
L
2 

320
2  160 mm 

 
Mass to be balanced at the crank pin  M  

M  c m  m P   
2
3 x 60  40  80 kg 

 

 
m 

 
r 
 
 M r therefore  m 

 


M r 

and 
c c c 

rc 
     

        

i.e. m   
80 x 160

 36.57 kg 
c 350 

 

(ii) Unbalanced force when the crank has turned 50
0
 from the top-dead centre. 

 
Unbalanced force at θ 50 0        

 1  c mr ω2 cos θ2  c mr ω2 sin θ2 
     

 
 2 

   2    2
  2 0  2 2 0
       

 1    

x 60 x 0.16 x 2π cos 50 
 

 

   

x 60 x 0.16 x 2π sin50
 

   
           

 

 
3 

 

    3  

       
 209.9 N

 
 
 
 
 

 
 



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
 

Problem 2:  
The following data relate to a single cylinder reciprocating engine:  
Mass of reciprocating parts = 40 kg  
Mass of revolving parts = 30 kg at crank radius  
Speed = 150 rpm, Stroke = 350 mm.  
If 60 % of the reciprocating parts and all the revolving parts are to be balanced, determine 
the,  

c) balance mass required at a radius of 320 mm and (ii) unbalanced force when 

the crank has turned 45
0
 from the top-dead centre. 

 
Solution: 

 
Given : m  mass of the reciprocating  parts  40 kg  

mP   30 kg , N  150 rpm,  L  length of the stroke  350 mm  
  60 % , r c 320 m m 

 
 
 

= Balance mass required at a radius of 350 mm 
 

 ω 2 π N  2 π x 150  15.7 rad/s 
We have, 

     

     60  60     
 r L  350  175 mm    
      

  2 2         

 Mass to be balanced at the crank pin  M 

 M  c m  mP  0.60 x 40  30  54 kg 

 
m c rc   M r therefore  mc  

M r 

and 
 r

c 
                

 i.e. m   54 x 175 29.53 kg    
 

c 
    

    

320 
     

           
 

(ii) Unbalanced force when the crank has turned 45
0
 from the top-dead centre. 

 
Unbalance d force at θ 45 0  

 1cmrω2cosθ2c mrω2sinθ2
 10.60x 40 x 0.175 x15.72cos 45020.60 x 40 x 0.175 x15.72sin 4502

 880.7 N 
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SECONDARY BALANCING:  

Secondary acceleration force is equal to mr 2  
cos

 
2

 (1) 
n  

Its frequency is twice that of the primary force and the magnitude 
1

n times the 
magnitude of the primary force.  

The secondary force is also equal to mr (2)2  
cos

 
2

 (2) 
4n 

 
Consider, two cranks of an engine, one actual one and the other imaginary with the 
following specifications. 

 
  Actual Imaginary  

 Angular velocity   
2
  

 Length of crank r  r   

    4n  
 Mass at the crank pin m  m  

       

        
 
 

 

Thus, when the actual crank has turned through an angle  t , the imaginary crank 

would have turned an angle 22  t 
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Centrifugal force induced in the imaginary crank = 
m r

 
2

 
ω

 


2 

4 n  

Component of this force along the line of stroke is = 
m r

 
2

 
ω

 


2 
cos 2 θ 4 n 

 
Thus the effect of the secondary force is equivalent to an imaginary crank of length 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

r  
4n  

rotating at double the angular velocity, i.e. twice of the engine speed. The imaginary 
crank coincides with the actual at inner top-dead centre. At other times, it makes an angle 
with the line of stroke equal to twice that of the engine crank.  
The secondary couple about a reference plane is given by the multiplication of the 
secondary force with the distance ‘ l ’ of the plane from the reference plane. 

 

 
COMPLETE BALANCING OF RECIPROCATING PARTS 

 
Conditions to be fulfilled:  
3. Primary forces must balance i.e., primary force polygon is enclosed.  
4. Primary couples must balance i.e., primary couple polygon is enclosed.  
5. Secondary forces must balance i.e., secondary force polygon is enclosed.  
6. Secondary couples must balance i.e., secondary couple polygon is enclosed.  
Usually, it is not possible to satisfy all the above conditions fully for multi-cylinder 
engine. Mostly some unbalanced force or couple would exist in the reciprocating engines. 

 
BALANCING OF INLINE ENGINES: 

 
An in-line engine is one wherein all the cylinders are arranged in a single line, one behind 
the other. Many of the passenger cars such as Maruti 800, Zen, Santro, Honda-city, 
Honda CR-V, Toyota corolla are the examples having four cinder in-line engines. 

 

 
In a reciprocating engine, the reciprocating mass is transferred to the crankpin; the axial 
component of the resulting centrifugal force parallel to the axis of the cylinder is the 
primary unbalanced force. 

 
Consider a shaft consisting of three equal cranks asymmetrically spaced. The crankpins 
carry equivalent of three unequal reciprocating masses, then 

 
 
 
 
 
 
 
 
 



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primary force  ∑ m r ω2 cos θ  (1) 

Primary couple  ∑ m r ω2 l cos θ  (2) 

Secondary  force  ∑ m r 
2ω2  

cos 2θ (3) 4n        

And Secondary  couple  ∑ m r 2ω2 

l cos 2θ  

        4 n 
 

 ∑ m r 
 ω 2 

l cos 2θ  (4)   n         

 
GRAPHICAL SOLUTION: 

 
To solve the above equations graphically, first draw the ∑ m r cos θ polygon ( 2 is common to all forces). Then the axial 
component of the resultant forces 

 
multiplied by 2  provides the primary unbalanced force on the system at that 
moment. 
This unbalanced force is zero when 900  and a maximum when 00 . 

 
 
 

(Fr cos) 
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If the force polygon encloses, the resultant as well as the axial component will always be 
zero and the system will be in primary balance. 
Then, 

 

F FP h  0 and ∑ FP V  0 
 

To find the secondary unbalance force, first find the positions of the imaginary secondary cranks. 

Then transfer the reciprocating masses and multiply the same by 
2

2 or 


2 

 
4n n  

to get the secondary force.  
In the same way primary and secondary couple ( m r l ) polygon can be drawn for 
primary and secondary couples. 

 
Case 1:  

IN-LINE TWO-CYLINDER ENGINE 
 

Two-cylinder engine, cranks are 180
0
 apart and have equal reciprocating masses.  
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VTU EDUSAT PROGRAMME-17  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Taking a plane through the centre line as the reference plane, 

 
 

Primary force  m r ω2 cos θ  cos (180 θ ) 0     

     2    l  l   2   
Primary couple  m r ω    cos θ   cos(180 θ)  m r ω  l cos θ 

 

   

       2      

     2   

   

   

            

Maximum values are m r ω2 l at θ 0 0  and 1800     

Secondary  force  m r ω 2  cos 2 θ cos (3 6 0  2 θ) 
2 m r

 
ω

 2 
cos 2 θ 

   

     n       n  

Maximum values are 2m r ω2  when 2 θ 0 0  , 180 0  , 360 0 and 540 0 
   

  n      or θ  0 0 , 90 0 ,180 0  and 270 0     
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Secondary couple  
m r

 
ω

 2 
n 

 
 

 l l   
     

  c os 2 θ   c os ( 3 6 0 2 θ )   0 
 

  
 2   

2 

      

 
ANALYTICAL METHOD OF FINDING PRIMARY FORCES AND COUPLES 

 
 First the positions of the cranks have to be taken in terms of θ 0
 The maximum values of these forces and couples vary instant to instant and are equal to 

the values as given by the equivalent rotating masses at the crank pin.
 

If a particular position of the crank shaft is considered, the above expressions may not 
give the maximum values. 
For example, the maximum value of primary couple is m r ω2 l and this value is  
obtained at crank positions 0

0
 and 180

0
. However, if the crank positions are assumed 

at 90
0
 and 270

0
, the values obtained will be zero. 

 
 If any particular position of the crank shaft is considered, then both X and Y 

components of the force and couple can be taken to find the maximum values.
 

For example, if the crank positions considered as 120
0
 and 300

0
, the primary couple 

can be obtained as 
 

 2 l 0   l 0 0 
X  componentm rω 

 

 
cos 120 

 


  

cos 1 8 0
 

 120 
 

  2   
  2  

  

   

           

  2
1

 m r ω 2  l
 

 
2 l  

0  l   0
 

0 
      

Y component   m r ω  sin120  

2 
sin 180  120  

  2  
  

   
            

 2
3

 m r ω 2 l 
 

       2  

 

   2
  

 

1
    

3
 

2     
 

  
 Primary couple   2 l   mr ω l  

     

Therefore, 
 mr ω 

  

  

         

  2     
2 

   
 mr ω2 l

 
 
 
 

Case 2:  
IN-LINE FOUR-CYLINDER FOUR-STROKE ENGINE 
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This engine has tow outer as well as inner cranks (throws) in line. The inner throws are at 
180

0
 to the outer throws. Thus the angular positions for the cranks are θ 0 for the first, 

180 0   θ 0  for the second, 180 0   θ 0  for the third and θ 0  for the fourth.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
FINDING PRIMARY FORCES, PRIMARY COUPLES, SECONDARY 
FORCES AND SECONDARY COUPLES: 

 
Choose a plane passing through the middle bearing about which the arrangement is 
symmetrical as the reference plane. 

 

Primary force  m r ω 2 cos θ  cos (180 0  θ )  cos (180 0  θ )  cos θ 
 

 0
 

    3l cos θ  l cos (180 0  θ)    
    

 

       

       

2 
   

Primary  couple   m r ω 2 2               

l  

      

3l  

 

                    cos (180 0 θ)    cos θ 
       

 
                

2  

 

    2         

 0                      

Secondary  force  m r ω 2  c os 2 θ  c os ( 3 6 0 0  2θ)  
   

 
          

 
 

 

n 
        

 2 θ )  c os 2 θ 
 

       c os ( 3 6 0 0 
 

 
                    

 
4 m r

 
ω

 2 c os 2 θ n
 

M a x i m u m value  
m r

 
ω

 2 

n 
at 2 θ 0 0 ,18 0 0 ,3 60 0 a n d 54 0 0   or 

 
θ 0 0 ,9 0 0 ,1 80 0 a n d 27 0 0 

 
 
 

    3l   l    0    
   2

 
cos2θ    cos(360  2θ)  

  

m r ω 2 
  

  2            0 Secondary  couple     
 

          

3l 
 

 

n 
    

 

      

 
   l    0    
       cos(360  2θ)   cos2θ 

 

       

     

2  

      

2              
 

Thus the engine is not balanced in secondary forces. 
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Problem 1: 
 

A four-cylinder oil engine is in complete primary balance. The arrangement of the 
reciprocating masses in different planes is as shown in figure. The stroke of each piston is 
2 r mm. Determine the reciprocating mass of the cylinder 2 and the relative crank 
position.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
 

 Given :            

  m1 3 8 0 kg, m2  ? , m 3  5 9 0 kg, m 4  4 8 0 k g  

  crank length  L  2 r r   
      

   2   2      
              
          Cent.  Distance Couple/ ω

2 

Plane 
 Mass (m) Radius (r)  Force/ω

2 
 from Ref ( m r l ) 

 kg  m    (m r )  plane ‘2’ kg m
2 

       

          kg m  m  
1  380  r     380 r  -1.3 -494 r 

2(RP)  m2  r     m2 r  0 0 
3  590  r     590 r  2.8 1652 r 
4  480  r     480 r  4.1 1968 r 
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Analytical Method: 

 

Choose plane 2 as the reference plane and 3 00 .  
.  
Step 1:  
Resolve the couples into their horizontal and vertical components and take their sums. 

 
Sum of the horizontal components gives 

 

494 r cos  1652 rcos 0 0  1968 rcos 
4 
 0 

1   

i.e.,  494 cos 1   1652  1968 cos 4  (1) 
 

Sum of the vertical components gives 
 

 494 r sin  1652r sin 0 0  1968 r sin 
4
 0 

1    
i.e., 494 sin 1   1968 sin 4  (2) 

 
Squaring and adding (1) and (2), we get 

 

4942  1652  1968 cos θ 42  1968 sin θ 4 2 
i.e.,  
4942 1652 2  2 x 1652 x 1968 cos θ 4 1968 cos θ 4 2  1968 sin θ 4 

2 On solving w e get, 
 

cos θ 4  0.978 and θ 4  167.9 0  or 192.10 

 
Choosing one value, say θ 4 167.90    

        

Dividing (2) by (1), we get      

tan θ1 
 1968 sin(167.9 0 ) 


412.53 

1.515      

 

1652  1968 cos (167.9 0 ) 272.28      

i.e., θ 
1 
 123.4 0      

        

 
Step 2: 

 
Resolve the forces into their horizontal and vertical components and take their sums. 

 
Sum of the horizontal components gives 

 

380 r cos(123.40 ) m r cos  590 rcos 00 480rcos(167.90 ) 0 
2 2  

or m2  cos 2   88.5  (3) 
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Sum of the vertical components gives 

 

380 r sin(123.40 ) m r sin  590 r sin00 480rsin(167.90 ) 0 
2 2       

or m2  sin 2   417.9  (4) 

Squaring and adding (3) and (4), we get     

 m2    427.1 kg Ans 

Dividing (4) by (3), we get tan θ     417.9  4.72 
2

  

  88.5   
       

  or   θ 2  282 0   Ans 
        

         

          
 
 
 

Graphical Method: 
 

Step 1: Draw the couple diagram taking a suitable scale as shown. 
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This diagram provides the relative direction of the masses 

 
Step 2: Now, draw the force polygon taking a suitable scale as shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This gives the direction and magnitude of mass m2. 
 

The results are: 
 

 1680 , 1230 , 2820
4 1 2  

m2 r  427r  or m2   427 kg Ans 
 

m1 ,m3 and m4 . 
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Problem 2: 
 

Each crank of a four- cylinder vertical engine is 225 mm. The reciprocating masses of the 
first, second and fourth cranks are 100 kg, 120 kg and 100 kg and the planes of rotation 
are 600 mm, 300 mm and 300 mm from the plane of rotation of the third crank. 
Determine the mass of the reciprocating parts of the third cylinder and the relative 
angular positions of the cranks if the engine is in complete primary balance. 

 
Solution: 

 Given :       

   r  2 2 5 m m      

   m1  100 kg, m2   120 kg  and m4  100 kg  

          
     Cent.  Distance Couple/ ω

2 

Plane 
  Mass (m) Radius (r) Force/ω

2 
 from Ref ( m r l ) 

  kg m (m r )  plane ‘2’ kg m
2 

    

     kg m  m  
1   100 0.225 22.5  -0.600 -13.5 
2   120 0.225 27.0  -0.300 -8.1 

3(RP)   m3 0.225 0.225 m3  0  0 
4   100 0.225 22.5  0.300 6.75 
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Analytical Method: 

 

Choose plane 3 as the reference plane and 1 00 .  
Step 1:  
Resolve the couples into their horizontal and vertical components and take their sums. 
Sum of the horizontal components gives 

 

13.5 cos 00 8.1 cos 2  6.75 cos  4  

0 i.e., 8.1 cos 2  6.75 cos 4 13.5 
 

i.e., 8.1 cos 2   6.75 cos 413.5(1) 

Sum of the vertical components gives      

13.5 sin 0 0 8.1 sin  2 6.75 sin  4 0 
     

i.e., 8.1 sin 2   6.75 sin 4(2) 

Squaring and adding (1) and (2), we get      

(8.1)2  (6.75 cos θ  13.5)2 (6.75 sin θ )2 
 4     4  

65.61  45.563cos 2θ 4 182.25 cos θ 4 182.25 45.563sin 2θ 4  
 45.563(cos2θ 4  sin 2θ 4)  182.25 cos θ 4 182.25
 45.563-182.25 cos θ4  182.25

 
 

i.e., 182.25 cos θ4 45.563 182.25-65.61 162.203 
 

Therefore, cos θ 4   162.203 and θ 4 27.130  Ans  
  

   182.25       

Dividing (2) by (1), we get       

tan θ    6.75 sin (27.13 0 )  3.078 1.515 
2  6.75 cos (27.13 0) -13.5 7.493 

     
           

i.e., θ 2 
 -22.330  1800  157.67 0  

           

 
Step 2:  
Resolve the forces into their horizontal and vertical components and take their sums. 

 
Sum of the horizontal components gives 
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22.5 cos ( 0 0 ) 2 7 cos (157.67 0 )  0.225 m  cos θ 22.5 cos ( 27.130)0 
  3 3 

i.e., 22.5 24.975  0.225 m3 cos θ 3  20.02 0  

i.e., 0.225 m3 cos θ 3  17.545  ( 3 ) 
 

And sum of the vertical components gives 
 

22.5 sin ( 0 0 ) 27 sin (157.67 0 )  0.225 m  sin θ  22.5 sin ( 27.13 0 ) 0 
3 3  

i.e., 10.258 0.225 m3 sin θ 3   10.26 0  
i.e., 0.225 m 3 sin θ 3   -20.518  (4) 

 
Squaring and adding (3) and (4), we get   

(0.225 )2  m2 ( 17.545)2  ( 20.518)2 
 3      
      

 17.545 2 20.518 2  
     

i.e.,  m 3   

0.225 
  

  

  0.225   
 119.98 kg  120 kg Ans 

 

Dividing (4) by (3), we get tan θ 3   
 20.518  

-17.545       

  or   θ 3 
 229.5 0   Ans 
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Problem 3: 

 

The cranks of a four cylinder marine oil engine are at angular intervals of 90
0
. The engine 

speed is 70 rpm and the reciprocating mass per cylinder is 800 kg. The inner cranks are 1 
m apart and are symmetrically arranged between outer cranks which are 2.6 m apart. 
Each crank is 400 mm long.  
Determine the firing order of the cylinders for the best balance of reciprocating masses 
and also the magnitude of the unbalanced primary couple for that arrangement. 

 
Analytical Solution: 

 
Given : 

 

=  8 0 0 kg, N 7 0 r p m , r  0.4 m, ω  
2

 
π

 
N

  7.33 rad / s 6 0 
 

m r ω 2   8 0 0 x 0.4 x (7.33)2   1 7 1 9 5 
 
 
 

Note: 
 

There are four cranks. They can be used in six different arrangements as shown. It 
can be observed that in all the cases, primary forces are always balanced. Primary 
couples in each case will be as under.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Taking 1 as the reference plane, 
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 mr 2 

l32l2l42171951.820.82.62 

 
 43761 Nm

 
Cp 6  Cp1  43761 Nm only, since l 2 and l 4 are int erchanged Cp 

2  mr 2 l42l2l32171952.620.81.82 

 
 47905 Nm

 
Cp5   Cp 2   47905 Nm only, since l 2  and l3  are int erchanged 

 
 
 

Cp3  mr 2  l22l4l32171950.822.61.82 
  
 19448 Nm

 
Cp4   Cp3   19448 Nm only, since l 4  and l3  are int erchanged 

 

Thus the best arrangement is of 3
rd

 and 4
th

. The firing orders are 1423 and 1324 
respectively. 
Unbalanced couple = 19448 N m. 

 
Graphical solution:  
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Case 3:  

SIX – CYLINDER, FOUR –STROKE ENGINE 
 

Crank positions for different cylinders for the firing order 142635 for clockwise rotation 
of the crankshaft are, for 

 
   

First  00 Second 2400 And 
1 

Fourth  2  1200 m1 m2 m3 m4 m5 m6 Third  1200 

3 4 

r1 r2 r3 r4 r5 r6 

 

  

Fifth 2400 Sixth 00 
 

5 6  
    

 
Since all the force and couple polygons close, it is inherently balanced engine for primary 
and secondary forces and couples.  
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VTU EDUSAT PROGRAMME-17  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 1: 
 

Each crank and the connecting rod of a six-cylinder four-stroke in-line engine are 60 mm 
and 240 mm respectively. The pitch distances between the cylinder centre lines are 80 
mm, 80 mm, 100 mm, 80 mm and 80 mm respectively. The reciprocating mass of each 
cylinder is 1.4 kg. The engine speed is 1000 rpm. Determine the out-of-balance primary 
and secondary forces and couples on the engine if the firing order be 142635. Take a 
plane midway between the cylinders 3 and 4 as the reference plane. 

 
Solution: 

 
Given :  

∑  60 mm , l  connecting rod length  240 mm , m  reciprocat 
ing mass of each cylinder 1.4 kg , N  1000 rpm 

W e have, ω  
2
 
πN

  
2
 
π
 
x1000

  104.72 rad / s  
60 60 
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VTU EDUSAT PROGRAMME-17 
 

   Cent. Distance Couple/ ω
2 

Plane Mass (m) kg 
Radius (r) Force/ω

2 
from Ref ( m r l ) 

m (m r ) plane ‘2’ kg m
2 

  

   kg m m  
1 1.4 0.06 0.084 0.21 0.01764 
2 1.4 0.06 0.084 0.13 0.01092 
3 1.4 0.06 0.084 0.05 0.0042 
4 1.4 0.06 0.084 -0.05 -0.0042 
5 1.4 0.06 0.084 -0.13 -0.01092 
6 1.4 0.06 0.084 -0.21 -0.01764 

 
Graphical Method: 

 
Step 1:  
Draw the primary force and primary couple polygons taking some convenient scales.  
Note: For drawing these polygons take primary cranks position as the reference  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NO UNBALANCED  
PRIMARY FORCE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO UNBALANCED  
PRIMARY COUPLE 
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Step 2:  
Draw the secondary force and secondary couple polygons taking some convenient scales. 
Note: For drawing these polygons take secondary cranks position as the reference  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 2: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO UNBALANCED 
SECONDARY FORCE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO UNBALANCED 
SECONDARY COUPLE 

 
The firing order of a six –cylinder vertical four-stroke in-line engine is 142635. The 
piston stroke is 80 mm and length of each connecting rod is 180 mm. The pitch distances 
between the cylinder centre lines are 80 mm, 80 mm, 120 mm, 80 mm and 80 mm 
respectively. The reciprocating mass per cylinder is 1.2 kg and the engine speed is 2400 
rpm. Determine the out-of-balance primary and secondary forces and couples on the 
engine taking a plane midway between the cylinders 3 and 4 as the reference plane. 

 
Solution:  

Given :  

r  
L
2  

80
2  40 mm , l  connecting rod length  180 mm , 

 
m  reciprocat ing mass of each cylinder 1.2 kg , N  
2400 rpm 

We have, ω  
2

 
π

 
N

  
2

 
π

 
x 2400

  251.33 rad / s  
60 60 
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   Cent. Distance Couple/ ω
2 

Plane Mass (m) kg 
Radius (r) Force/ω

2 
from Ref ( m r l ) 

m (m r ) plane ‘2’ kg m
2 

  

   kg m m  
1 1.2 0.04 0.048 0.22 0.01056 
2 1.2 0.04 0.048 0.14 0.00672 
3 1.2 0.04 0.048 0.06 0.00288 
4 1.2 0.04 0.048 -0.06 -0.00288 
5 1.2 0.04 0.048 -0.14 -0.00672 
6 1.2 0.04 0.048 -0.22 -0.01056 

 
Graphical Method: 

 
Step 1:  
Draw the primary force and primary couple polygons taking some convenient scales.  
Note: For drawing these polygons take primary cranks position as the reference  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: No primary unbalanced force or couple 
 
 
 



 

MALLAREDDY ENGINEERING COLLEGE(Autonomous) 

 
Step 2:  
Draw the secondary force and secondary couple polygons taking some convenient scales. 
Note: For drawing these polygons take secondary cranks position as the reference  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: No secondary unbalanced force or couple 
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Problem 3: 
 

The stroke of each piston of a six-cylinder two-stroke inline engine is 320 mm and 
the connecting rod is 800 mm long. The cylinder centre lines are spread at 500 mm. 
The cranks are at 60

0
 apart and the firing order is 145236. The reciprocating mass 

per cylinder is 100 kg and the rotating parts are 50 kg per crank. Determine the out 
of balance forces and couples about the mid plane if the engine rotates at 200 rpm. 

 
 

 
Primary cranks position 

 
   Relative positions of Cranks in degrees  

Firing θ1  θ2 θ3 θ4 θ5 θ6 

order        
142635 0  240 120 120 240 0 
145236 0  180 240 60 120 300 

Secondary cranks position      
     
   Relative positions of Cranks in degrees  

Firing θ1  θ2 θ3 θ4 θ5 θ6 

order        
142635 0  120 240 240 120 0 
145236 0  0 120 120 240 240 

 

 
Calculation of primary forces and couples: 

 
Total mass at the crank pin = 100 kg + 50 kg = 150 kg 

 
 

   Cent. Distance Couple/ ω
2 

Plane 
Mass (m) Radius (r) Force/ω

2 
from Ref ( m r l ) 

kg m (m r ) plane kg m
2 

 

   kg m m  
1 150 0.16 24 1.25 30 
2 150 0.16 24 0.75 18 
3 150 0.16 24 0.25 6 
4 150 0.16 24 -0.25 -6 
5 150 0.16 24 -0.75 -18 
6 150 0.16 24 -1.25 -30 
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Calculation of secondary forces and couples: 

 
Since rotating mass does not affect the secondary forces as they are only due to 
second harmonics of the piston acceleration, the total mass at the crank is taken as 
100 kg. 

 
   Cent. Distance Couple/ ω

2 

Plane 
Mass (m) Radius (r) Force/ω

2 
from Ref ( m r l ) 

kg m (m r ) plane kg m
2 

 

   kg m m  
1 100 0.16 16 1.25 20 
2 100 0.16 16 0.75 12 
3 100 0.16 16 0.25 4 
4 100 0.16 16 -0.25 -4 
5 100 0.16 16 -0.75 -12 
6 100 0.16 16 -1.25 -20  
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BALANCING OF V – ENGINE 
 

Two Cylinder V-engine:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A common crank OA is operated by two connecting rods. The centre lines of the two 
– cylinders are inclined at an angle  to the X-axis.  
Let  be the angle moved by the crank from the X-axis. 

 
Determination of Primary force:   

Primary force of 1 along line of stroke OB1 = mr 2 cos( ) (1) 

Primary force of 1 along X - axis = mr 2 cos(  ) cos  (2) 

Primary force of 2 along line of stroke OB2 = mr 2 cos( )  (3) 

Primary force of 2 along X-axis = mr 2 cos( )cos (4) 
 

Total primary force al ong X - axi s 
   mr ω2 cos α cos ( θ  α )  cos ( θ  α )
   mr ω2  cos α cos θ cos α  sin θ sin α  cos θ cos α sin θ sin α
   mr ω2  cos α x 2 cos θ cos α
   2 mr ω2  cos2  α cos θ (5)
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Similarly, 

 
Total primary force along Z - axis  

 mr ω2  cos( θ  α ) sin α -cos( θ  α )sin α
 mr ω2  sin α (cos θ cos α sin θ sin α) ( cos θ cos α sin θ sin α
 mr ω2  sin α x 2 sin θ sin α
 2 mr ω2  sin2  α sin θ (6)

 
Resultant P r i ma r y force  

   2 m rω2cos2αcosθ22 m rω2sin2αsinθ2
   2 m r ω 2 cos2αcosθ2sin2αsinθ2( 7 ) 

 
and this resultant primary force will be at angle β with the X – axis, given by, 

 

tanβ  sin 2α sin θ (8) 
cos 2α cos θ   

 

If 2 900 , the resultant force will be equal to 
 
 

2 m r ω 2 cos2450cosθ2sin2450sinθ2 
  
   m r ω 2   ( 9 )

 

and  sin 2 45 0 sin θ 

tan β 
   

 tan θ (10)  cos 2 45 0 cos θ 
 

i.e., β  θ or it acts along the crank and therefore, can be completely balanced by a mass 
at a suitable radius diametrically opposite to the crank, such that, 

 
mr rr  mr - - - - -(1 1 ) 

 
For a given value of α, the resultant force is maximum (Primary force), when 

 

cos 2 α cos θ2   sin 2 α sin θ2 is ma x i mum 

cos 4 

or  

α cos 2 θ sin 4 α sin 2 θ  is ma x i mum 
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Or 
 

d
d
θ cos 4 α cos 2 θ  sin 4 α sin2 θ  0 i.e., - cos 4 α x 

2 cos θ sin θ  sin 4 α x 2 sin θ cos θ  0 
  

i.e., - cos 4 α x sin 2 θ  sin 4 α x sin 2 θ  

0 i.e., sin 2 θ sin 4 α - cos 4 α  0 
 

As  is not zero, therefore for a given value of  , the resultant primary force is 

maximum when θ 0 0 . 
 

Determination of Secondary force: 
 

Secondary force of 1 along line of stroke OB1 is equal to 
 

   mr 
2cos 2( ) (1) 

  
      

    n         

Secondary force of 1 along X - axis =
mr 2  

cos 2( ) cos  (2)  
n             

Secondary force of 2 along line of stroke OB2 =   

 mr 
2cos 2( )  (3) 

      
        

 n           

Primary force of 2 along X-axis =
 mr 2  

cos 2( )cos (4)  
n 

 

Therefore, 
      
        

Total secondary force al ong X - axi 
s      

    
m r ω 
2 cos α cos 2 ( θ  α )  cos 2 ( θ  α )

     

      n       

 
m r

 
ω

 2 cos α (cos 2 θ cos 2 α  sin 2 θ sin 2 α )  (cos 2 θ cos 2 α  sin 2 θ sin 
2 α n  2 m r ω 2 

 cos α  cos 2 θ cos 2 α (5)  
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Similarly, 

 
Total secondary force along Z - axis  

 
2 mr

 
ω

 2 sin α sin2 θ sin2 α (6) n 
 

Resultant Secondary force        


2 mr ω 2 cos α cos 2 θ cos 2 α2  sin α sin 2 θ sin 2 α2   ( 7 )  n    

                 

And  

tan β 
' 


sin α sin 2 θ sin 2 α     

         

(8) 
 

   cos α cos 2 θ cos 2 α  

If  2 α 90 0 or  α  45 0 ,         

       2mr 2 
 

sin 2 2     
           mr 2  
             

Secondary force = 
   

 2
 

sin 2 (9) 

n        n 2      

And tan β '   and  β'   900 (10) i.e., the force acts along Z-   
axis and is a harmonic force and special methods are needed to balance it. 

 
Problem 1: 

 

The cylinders of a twin V-engine are set at 60
0
 angle with both pistons connected to a 

single crank through their respective connecting rods. Each connecting rod is 600 mm 
long and the crank radius is 120 mm. The total rotating mass is equivalent to 2 kg at the 
crank radius and the reciprocating mass is 1.2 kg per piston. A balance mass is also fitted 
opposite to the crank equivalent to 2.2 kg at a radius of 150 mm. Determine the maximum 
and minimum values of the primary and secondary forces due to inertia of the 
reciprocating and the rotating masses if the engine speed is 800 mm. 

 
Solution: 

 
Given :  
m  reciprocating mass of each piston 1.2 kg M  
equivalent rotating mass  2 kg 

 
m C balancing mass  2.2 kg, rC  150 mm l  

connecting rod length  600 mm 
 
+  crank radius 120 mm N  800 

rpm 

W e have,  ω 
 2 π N 


 2 π x 800 

 83.78 rad / s and n 
l 


 600
5 

60 60 r 120      
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Primary Force: 
 

Total primary force along X - axis 2 m r ω 2 cos 2 α cos θ (1) Centrifuga l force due to 
rotating mass along X  axis  

M r ω 2  cos θ (2) 
 

Centrifuga l force due to balancing mass along X  axis  
 m C r C ω 2  cos θ (3) 

 
Therefore total unbalance force along X –axis = (1) + (2) + (3) 

 
That is 

Total Unbalance force along X axis  
 2 mr ω2  cos2  α cos θ  M r ω2  cos θ  m Cr 

Cω2  cos θ
 ω2  cos θ 2 mr cos 2 α  M r - m C r C 
 83.782 cos θ 2x1.2x0.12xcos2 30 0  2x0.12 

2.2x0.15
 83.782  cos θ0.216  0.24 - 0.33 884.41 

cos θ N - - - - - - - (4)
 

Total primary force along  Z - axis 2 m 
rω2sin2αsinθ(5) 
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Centrifuga l force due to rotating mass along Z  axis 

M r ω 2  sin θ (6) 

Centrifuga l force due to balancing mass along Z  axis 

 m C r C ω 2  sin θ (7) 
    

 
Therefore total unbalance force along Z –axis = (5) + (6) + (7) 

 
That is 

 
Total Unbalance force along Z - axis  
   2 mr ω2  sin2  α sin θ  M r ω2  sin θ  m Cr Cω2  sin θ
   ω2  sin θ 2 mr sin 2 α  M r - m C r C 
   83.782  sin θ 2x1.2x0.12xsin2 30 0  2x0.12 2.2x0.15
   83.782  sin θ0.072  0.24 - 0.33 -126.34 sin θ N - - - - - - - (8)

 
 
 

Resultant P r i ma r y force   

 884.41 cosθ2- 126.34 sinθ2


  782181.05 cos 2 θ 15961.8 sin 2 θ


  766219.25 cos 2 θ 15961.8  ( 9 ) 
 

This is maximum, when 00    and minimum, when 900 

Maximum  Primary force, i.e., when θ  0 0  

 

 766219.25 15961.8 884.41 N(10) 
 
 

And Minimum Primary force, i.e., when θ  90 0  
 
 

  766219.25 cos 2 90 0  15961.8 126.34 N(11) 
 
 
 

Secondary force: 
 

The rotating masses do not affect the secondary forces as they are only due to second 
harmonics of the piston acceleration. 
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Resultant Secondary force  

 2 mr ω 2 cos α cos 2 θ cos 2 α2   sin α sin 2 θ sin 2 α2   n      

cos 30 2   cos 2 θ cos 60 2 2 
 2 x1.2 x0.12x(83.78) 2 

 

 sin 30 0   sin 2 θ sin 60 0 2     5   

   404.3  0.1875 ( cos 2θθ2  0.1875 ( sin2θθ2  (12) 
 

This is maximum, when 00 and minimum, when 1800 

 
Maximum secondary force, i.e., when θ  0 0 

 404.3 0.1875 ( cos 0 0 ) 2   0.1875 ( sin 0 0 )2    175.07 N  (13)  
 

And Minimum secondary force, i.e., when θ 180 0 

 

 404.3 0.1875 ( cos1800)20.1875 ( sin18 00)2175.07 

N(14) 
 
 
 
 

BALANCING OF W, V-8 AND V-12 – ENGINES 
 

BALANCING OF W ENGINE 
 

In this engine three connecting rods are operated by a common crank. 
 

 
Total primary force along X - axis 

 

 m r ω 2   cos θ2 cos 2  α 1 (1) 
 

 
Total primary force along Z - axis will be same a s in the V  twin engine, 

(since the primary force of 3 along Z  axis is zero) 
 

 2 m r ω 2  sin 2  α  sin θ (2) 
 

Resultant P r i mar y force 

 m r ω 2 cosθ2 c os2α122sin2αsinθ2( 3 ) 
 
 
 

and this resultant primary force will be at angle β with the X – axis, given by, 
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tan β 

 2sin2  α sin θ   

(4) 

      

   cos θ2cos 2 α 1 

If  600 ,         
  Resultant Primary force   

and   


 
3 m r ω 2   (5)     

     

   2      

  tan β  tan θ (6)    

i.e., β  θ or it acts along the crank and therefore, can be completely balanced by a
mass at   a suitable radius   diametrically   opposite   to   the   crank,   such   that,
mr rr  mr - - - - - (7 ) 

 
Total secondary force al ong X - axi s 

 

 2m r ω 
2  

 cos 2θ    cos α cos 2 α 1  (8) 
 

 

 

n 
 

   
 

Total secondary force along Z –direction will be same as in the V-twin engine. 
 

Resultant secondary force  


m r ω 2 cos 2θ 2cos α cos 2 α 1 2  2sin α sin 2α sin 2θ2 (9) 

n        

  2sin α sin 2 θ sin 2 α    

tan β '  
 

(10) 
  

cos 2 θ2cos α cos 2 α 1    
 

If 600, 
 

Secondary force al ong X - axi s 
 



m r ω 2 cos 2θ 
(11) 2n  

 
Secondary force al ong Z - axi s 

 

 
3m r

 
ω

 2 sin 2θ 
(12) 2n 

 
It is not possible to balance these forces simultaneously 

 
V-8 ENGINE 

 
It consists of two banks of four cylinders each. The two banks are inclined to each other 
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in the shape of V. The analysis will depend on the arrangement of cylinders in each bank. 
 

V-12 ENGINE 
 

It consists of two banks of six cylinders each. The two banks are inclined to each other in 
the shape of V. The analysis will depend on the arrangement of cylinders in each bank. 

 
If the cranks of the six cylinders on one bank are arranged like the completely balanced 
six cylinder, four stroke engine then, there is no unbalanced force or couple and thus the 
engine is completely balanced. 

 
 

 
BALANCING OF RADIAL ENGINES: 

 

 
It is a multicylinder engine in which all the connecting rods are connected to a common 
crank.  
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Direct and reverse crank method of analysis: 
 

In this all the forces exists in the same plane and hence no couple exist. 
 

In a reciprocating engine the primary force is given by, mr 2 cos which acts along 

the line of stroke. 
 

In direct and reverse crank method of analysis, a force identical to this force is generated 
by two masses as follows. 

 
1.A mass m/2, placed at the crank pin A and rotating at an angular velocity ω in the 
counter clockwise direction.  
2.A mass m/2, placed at the crank pin of an imaginary crank OA’ at the same angular 
position as the real crank but in the opposite direction of the line of stroke. It is assumed 
to rotate at an angular velocity ω in the clockwise direction (opposite). 
3. While rotating, the two masses coincide only on the cylinder centre line. 

 
The components of the centrifugal forces due to rotating masses along the line of stroke 
are,  

Due to mass at A  
m

 r 2 cos 
2  

Due to mass at A'   
m

 r 2 cos
2 

 

Thus, total force along the line of stroke = mr 2 cos which is equal to the primary 
force. 
At any instant, the components of the centrifugal forces of these masses normal to the 
line of stroke will be equal and opposite.  
The crank rotating in the direction of engine rotation is known as the direct crank and 
the imaginary crank rotating in the opposite direction is known as the reverse crank. 

 
Now, 

 
Secondary accelerating force is 

mr 2 cos 2   mr(2)2  cos 2 
n 4n  

 m 
r

 (2)2 cos 
2  4n 
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This force can also be generated by two masses in a similar way as follows. 

 

1. A mass m/2, placed at the end of direct secondary crank of length r at an angle 2θ 
4n   

and rotating at an angular velocity 2ω in the counter clockwise direction. 
 
 

= A mass m/2, placed at the end of reverse secondary crank of length 

and rotating at an angular velocity 2ω in the clockwise direction. 

 
r 

at an angle -2θ  
4n 

 
 

The components of the centrifugal forces due to rotating masses along the line of stroke 
are, 

 

    Due to mass at C  m  r  (2 ω )2 cos2θ mrω 2 
cos2θ 

          

       2 4n  2n 

    Due to mass at C'  m   r  (2 ω )2 cos 2θ mrω 2 
cos 2θ 

 

2 4n 
 

          2n 

Thus, total force along the line of stroke =      

2x 
m  r 

(2 ω )2 cos 2θ 
mrω 2 

cos 2θ which is equal to the secondary force.             

 

2 4n n            
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Longitudinal 
and 

Tra nsverse 
Vibrations 

 

 Introduction 
When elastic bodies such as a spring, a beam and a 

shaft are displaced from the equilibrium position by the ap- 
plication of external forces, and then released, they execute a 
vibratory motion. This is due to the reason that, when a body 
is displaced, the internal forces in the form of elastic or strain 
energy are present in the body. At release, these forces bring 
the body to its original position. When the body reaches the 
equilibrium position, the whole of the elastic or strain energy 
is converted into kinetic energy due to which the body 
continues to move in the opposite direction. The whole of the 
kinetic energy is again converted into strain energy due to 
which the body again returns to the equilib- rium position. In 
this way, the vibratory motion is repeated indefinitely. 

 Terms Used in Vibratory Motion 

The following terms are commonly used in connec- 
tion with the vibratory motions : 

909 

Features (Main) 

1. Introduction. 
2. Terms Used in Vibratory 

Motion. 
3. Types of Vibratory Motion. 
4. Types of Free Vibrations. 
5. Natural Frequency of Free 

Longitudinal Vibrations. 
6. Natural Frequency of Free 

Transverse Vibrations. 
7. Effect of Inertia of the 

Constraint in Longitudinal and 
Transverse Vibrations. 

8. Natural Frequency of Free 
Transverse Vibrations. 

9. Natural Frequency of Free 
Transverse Vibrations. 

10. Natural Frequency of Free 
Transverse Vibrations. 

11. Natural Frequency of Free 
Transverse Vibrations. 

12. Critical or Whirling Speed of 
a Shaft. 

13. Frequency of Free Damped 
Vibrations(Viscous Damping). 

14. Damping Factor or Damping 
Ratio. 

15. Logarithmic Decrement. 

16. Frequency of Under Damped 
Forced Vibrations. 

17. Magnification Factor or 
Dynamic Magnifier. 

18. Vibration Isolation and 
Transmissibility. 



910 Theory of Machines • 

 

 

 

 
1. Period of vibration or time period. It is the time interval after which the motion is 

repeated itself. The period of vibration is usually expressed in seconds. 

2. Cycle. It is the motion completed during one time period. 

3. Frequency. It is the number of cycles described in one second. In S.I. units, the fre- 
quency is expressed in hertz (briefly written as Hz) which is equal to one cycle per second. 

 Types of Vibratory Motion 

The following types of vibratory motion are important from the subject point of view : 

1. Free or natural vibrations. When no external force acts on the body, after giving it an 
initial displacement, then the body is said to be under free or natural vibrations. The frequency of 
the free vibrations is called free or natural frequency. 

2. Forced vibrations. When the body vibrates under the influence of external force, then 
the body is said to be under forced vibrations. The external force applied to the body is a periodic 
disturbing force created by unbalance. The vibrations have the same frequency as the applied force. 
Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes 
place. 

3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration, 
the motion is said to be damped vibration. This is due to the fact that a certain amount of energy 
possessed by the vibrating system is always dissipated in overcoming frictional resistances to the 
motion. 

 Types of Free Vibrations 
The following three types of free vibrations are important from the subject point of view : 

1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations. 

Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end 
carrying a heavy disc, as shown in Fig. 23.1. This system may execute one of the three above 
mentioned types of vibrations. 

 

B = Mean position ; A and C = Extreme positions. 

(a) Longitudinal vibrations. (b) Transverse vibrations. (c) Torsional vibrations. 

Fig. 23.1. Types of free vibrations. 

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the 
axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations. 
In this case, the shaft is elongated and shortened alternately and thus the tensile and compressive 
stresses are induced alternately in the shaft. 
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2. Transverse vibrations. When the particles of the shaft or disc move approximately 
perpendicular to the axis of the shaft, as shown in Fig. 23.1 (b), then the vibrations are known as 
transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are 
induced in the shaft. 

Bridges should be built taking vibrations into account. 
 

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the 
axis of the shaft, as shown in Fig. 23.1 (c), then the vibrations are known as torsional vibrations. 
In this case, the shaft is twisted and untwisted alternately and the torsional shear stresses are in- 
duced in the shaft. 
Note : If the limit of proportionality (i.e. stress proportional to strain) is not exceeded in the three types of 
vibrations, then the restoring force in longitudinal and transverse vibrations or the restoring couple in torsional 
vibrations which is exerted on the disc by the shaft (due to the stiffness of the shaft) is directly proportional  
to the displacement of the disc from its equilibrium or mean position. Hence it follows that the acceleration 
towards the equilibrium position is directly proportional to the displacement from that position and the vibration 
is, therefore, simple harmonic. 

 

 Natural Fre quency of Free Longitudinal 
Vibrations 

The natural frequency of the free longitudinal vibrations may be determined by the following 
three methods : 

1. Equilibrium Method 
Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in Fig. 

23.2 (a). 

Let s = Stiffness of the constraint. It is the force required to produce unit 
displacement in the direction of vibration. It is usually expressed 
in N/m. 

m = Mass of the body suspended from the constraint in kg, 

W = Weight of the body in newtons = m.g, 
 

* The torsional vibrations are separately discussed in chapter 24. 
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Fig. 23.2. 

In the equilibrium position, as shown in Fig. 23.2 (
balanced by a force of spring, such that 

Since the mass is now displaced from its equilibrium position by a distance 
23.2 (c), and is then released, therefore after time 

Restoring force 

 

and Accelerating force = Mass ×

Equating equations (i) and 

m  
d 2

dt

 
d 2 x 

 
s 


 
  

dt2 m 
We know that the fundamental equation of simple harmonic motion is

d 2 x 
 2 

dt2 

Comparing equations (iii
 

 
 

 Time period, 

Theory of Machines 

p

x

 = Static deflection of the spring in metres due to weight W
newtons, and 

x = Displacement given to the body by the external force, in metres.

Fig. 23.2. Natural frequency of free longitudinal vibrations. 

In the equilibrium position, as shown in Fig. 23.2 (b), the gravitational pull W = m.g, is 
balanced by a force of spring, such that W = s.  . 

Since the mass is now displaced from its equilibrium position by a distance x, as shown in Fig. 
), and is then released, therefore after time t, 

 W  s (  x)  W  s.  s . x 

 s.  s.  s. x  s.x 

 
 

. . . (∵ W  s.) 

 
 

Accelerating force = Mass × Acceleration 

. . . (Taking upward force as negative)

d 2 x 
 m 

dt2 

 
. . . (Taking downward force as positive) . . . (ii

and (ii), the equation of motion of the body of mass m after time 
2 

2 x 
  .  

d x 
 .  0 

dt2 
s x or m s x 

dt2 

  0  
x 

 
We know that the fundamental equation of simple harmonic motion is 

2 .  0 
 

iii) and (iv), we have 

  

t  
2 

 2


s 

m 

m 

s 

W 

= Displacement given to the body by the external force, in metres. 

, is 

, as shown in Fig. 

 
 

. . . (i) 

. . . (Taking upward force as negative) 

ii) 

after time t is 

. . . (iii) 

. . . (iv) 



 

 

∵ 

1 s 

2   m 

1 9.81 

2  

 
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and natural frequency, fn   
1  
 

t p 

. . . (∵ m.g  s.) 

Taking the value of g as 9.81 m/s2 and  in metres, 

fn   
0.4985 

Hz
 

Note : The value of static deflection  may be found out from the given conditions of the problem. For 
longitudinal vibrations, it may be obtained by the relation, 

Stress 
 E

 
 

or 
W  

 
l 
 E or 

   
W .l  

 

Strain A  E.A  

where  = Static deflection i.e. extension or compression of the constraint, 

W = Load attached to the free end of constraint, 

l = Length of the constraint, 

E = Young’s modulus for the constraint, and 

A = Cross-sectional area of the constraint. 

2. Energy method 
We know that the kinetic 

energy is due to the motion of the 
body and the potential energy is 
with respect to a certain datum 
position which is equal to the 
amount of work required to move 
the body from the datum position. 
In the case of vibrations, the 
datum position is the mean or 
equilibrium position at which the 
potential energy of the body or the 
system is zero. 

In the free vibrations, no 
energy is transferred to the system 
or from the system. Therefore the 
summation of kinetic energy and 
potential energy must be a 
constant quantity which is same at 
all the times. In other words, 

 
 

This industrial compressor uses compressed air to power heavy- 
duty construction tools. Compressors are used for jobs, such 
as breaking up concrete or paving, drilling, pile driving, sand- 
blasting and tunnelling. A compressor works on the same prin- 
ciple as a pump. A piston moves backwards and forwards in- 
side a hollow cylinder, which compresses the air and forces it 
into a hollow chamber. A pipe or hose connected to the cham- 
ber channels the compressed air to the tools. 




ergy, 

d 
(K .E.  P.E.)  0 

dt 
We know that kinetic en- 

 
1 

Note : This picture is given as additional information and 
is not a direct example of the current chapter. 

 
 
 
 dx 2 

K.E.  
2 
 m  dt 



1 g 

2 



 

 

 

p
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and potential energy, 

 
P.E.  

 0  s.x  
x  

1 
 s.x2

 
 

   2  2 
 

. . . (∵ P.E. = Mean force × Displacement ) 

d  1  dx 
2 

1 2 



 

dt 
 

2 
 m  dt    s.x 2   0 

   
1 
  2  

dx 
 

d 2 x 
 

1 
  2 

 
    

 
dx 

 0 
 

 m 
2 dt dt2 

s x 
2 dt 

d 2 x m   .  0 
 

 

d 2 x 
 

s 
  0 

 
  or s x 

dt2 
or x 

dt2 m 
. . . (Same as before) 

The time period and the natural frequency may be obtained as discussed in the previous 
method. 

3. Rayleigh’s method 
In this method, the maximum kinetic energy at the mean position is equal to the maximum 

potential energy (or strain energy) at the extreme position. Assuming the motion executed by the 
vibration to be simple harmonic, then 

x  X sin .t . . . (i) 

where x = Displacement of the body from the mean position after time t 
seconds, and 

X = Maximum displacement from mean position to extreme position. 

Now, differentiating equation (i), we have 
 

dx 
  X cos .t 

dt 

Since at the mean position, t = 0, therefore maximum velocity at the mean position, 

v  
dx 

 .X 
dt 

 Maximum kinetic energy at mean position 

 
1 
 m.v2  

1 
 m.2 .X 2 

2 2 
and maximum potential energy at the extreme position 

  0  s.X  X  
1  s.X 2 

 
. . . (ii) 

 
 
 . . . (iii)  2  2 

 
Equating equations (ii) and (iii), 

1 
 m.2 .X 2 1   

s.X 2 
or 

2 2 

 
 
2  

s
 
m 

 
 
 
, and   

 
 Time period, t  

2 
 2




. . . (Same as before) 

s 

m 

s 

m 



 

 

1 s 

2   m 

m 
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and natural frequency, fn   
1

 
t p 

 
 


2


. . . (Same as before) 

Note : In all the above expressions, is known as natural circular frequency and is generally denoted by 
n. 

 Natural Frequency of Free Transverse 
Vibrations 

Consider a shaft of negligible mass, whose one 
end is fixed and the other end carries a body of weight 
W, as shown in Fig. 23.3. 

Let s = Stiffness of shaft, 

 = Static deflection due to 
weight of the body, 

x = Displacement of body from 

mean position after time t. 
m = Mass of body = W/g 

As discussed in the previous article, 

Restoring force = – s.x . . . (i) 

Fig. 23.3. Natural frequency of free 
transverse vibrations. 

 
and accelerating force  d 2 x 

dt2 

 
. . . (ii) 

Equating equations (i) and (ii), the equation of motion becomes 
2 m  

d 2 x 
  . m  

d x 
 .  0 s x 

dt2 

 
d 2 x 

 
s 
  0 

 
  

dt2  

 . . . (Same as before ) 
x 

dt2 m 
Hence, the time period and the natural frequency of the transverse vibrations are same as that 

of longitudinal vibrations. Therefore 
 

Time period, t p  2



and natural frequency, fn   
1  
 

t p 

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection 
curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,  
that the static deflection of a cantilever beam loaded at the free end is 

 
Wl3 
3EI 

(in metres) 

where W = Load at the free end, in newtons, 
l = Length of the shaft or beam in metres, 

E = Young’s modulus for the material of the shaft or beam in 
N/m2, and 

I = Moment of inertia of the shaft or beam in m4. 

1 s 

2   m 

m 

s 

1 g 

2 

s x or 



 

 





Example 23.1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 
100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m2. Determine the 
frequency of longitudinal and transverse vibrations of the shaft. 
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Solution. Given : d = 50 mm = 0.05 m ; l = 300 mm = 0.03 m ; m = 100 kg ; 
E = 200 GN/m2 = 200 ×109 N/m2 

We know that cross-sectional area of the shaft, 

A  
 
 d 2  

 
(0.05)2  1.96 103 m2 

4 4 
and moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.05)4  0.3 106 m4

 

64 64 

Frequency of longitudinal vibration 
We know that static deflection of the shaft, 

 
W .l 


A.E  

100  9.81 0.3 

1.96 103  200 109
 
 0.751106 m 

…(∵ W  m.g) 

Frequency of longitudinal vibration, 

fn   0.4985 

Frequency of transverse vibration 

 

0.4985 

0.751106
 

 
 
 575 Hz Ans. 

We know that static deflection of the shaft, 

 
W .l3 


3 E.I  

100 9.81 (0.3)3
 

3 200 109  0.3106
 
 0.147 103 m 

 Frequency of transverse vibration, 

fn  0.4985 



0.4985 

0.147 103
 

 

 
= 41 Hz Ans. 

 

 Effect of Inertia of the 
Constraint in 
Longitudinal and 
Transverse Vibrations 

In deriving the expressions for natural frequency of longitudinal 
and transverse vibrations, we have neglected the inertia of the constraint 
i.e. shaft. We shall now discuss the effect of the inertia of the constraint, 
as below : 

1. Longitudinal vibration 
Consider the constraint whose one end is fixed and other end is 

free as shown in Fig. 23.4. 

Let m1 = Mass of the constraint per unit length, 

l = Length of the constraint, mC = Total mass of the 



 

 

constraint = m1. l, and 

v = Longitudinal velocity of the free end. 
Fig. 23.4. Effect of inertia 

of the constraint in 
longitudinal vibrations. 



 

 

3
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Consider a small element of the constraint at a distance x  from the fixed end and of  length x 
. 

 Velocity of the small element 

 
x 
 v 

l 

and kinetic energy possessed by the element 

 
1 

× Mass (velocity)2 
2 

1  x 2 m .v2 x2 
  m1.x      v     1  x 

2  l  2l 2 

 Total kinetic energy possessed by the constraint, 

l m .v2x2 m .v2  x3  
l
 

 1 

0 2l2 
 dx  1 

2l2 
 
  0 

m1.v
2 l3 1 

 
   

2 l 1  m1.l  2 
 

   

1  mC  2 
  2l2  

3 
 

2 
 m1.v  

3 
 

2 


3  
v  

2 


3  
v . . . (i) 

 
 

mC 
If a mass of   

3
 

mass, then 

   
. . . (Substituting   m1  . l =  mC) 

 
is placed at the free end and the constraint is assumed to be of negligible 

Total kinetic energy possessed by the constraint 

 
1  mC  

v 2
 

 
  

 

 . . . [Same as equation (i)] . . . (ii) 

2            3 

Hence the two systems are dynamically same. Therefore, inertia of the constraint may be 
allowed for by adding one-third of its mass to the disc at the free end. 

From the above discussion, we find that when the mass of the constraint mC and the mass of 
the disc m at the end is given, then natural frequency of vibration, 

 

fn 



2. Transverse vibration 
Consider a constraint whose one end is fixed and the other end 

is free as shown in Fig. 23.5. 

Let m1 = Mass of constraint per unit length, 
l = Length of the constraint, 

mC = Total mass of the constraint = m1.l, and 

v = Transverse velocity of the free end. 

Consider a small element of the constraint at a distance x 
from the fixed end and of length x . The velocity of this element is 

 

 
 

Fig. 23.5. Effect of inertia 
of the constraint in 

transverse vibrations. 

1 

2
s 

m  
mC

 
3 



 

 

1 
m1 

m .v2
 

l 
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 3l.x2  x3 
 
given by  

 2l3 
v . 


 Kinetic energy of the element 

1  3l.x2  x3 2 

 
2 
 m1.x  2l3  v 

 
and total kinetic energy of the constraint, 

    
 3l.x2  x3

 
 

  

2 
 v 

l 
dx    1  (9l2 .x4  6l.x5  x6 ) dx 

2  2l3  8l6 

0   0 

m .v2 9 l2.x5
 

   1   
6 l.x6 



x7  l 




8l6  5 6 7  0
 

 
m1.v2  9 l7 

 
6 l7 

 
l7  

 
m1.v2  33l7 8 l6 

  
5 6 7 


 8 l6  35 

   

 
33 

 m1.l.v2  
1  33 

 m1.l  v2  
1  33 

 mC 
 v2

 
 

     

 . . . (i) 
280 2  140  2  140 




If a mass of 

gible mass, then 

 
 
33 mC 

140 

   
. . . (Substituting  m1.l  = mC) 

 
is placed at the free end and the constraint is assumed to be of negli- 

Total kinetic energy possessed by the constraint 

 
1  33 mC  v2 

 
  

 
 

. . . [Same as equation (i)] 
2    140 
 

Hence the two systems are dynamically same. Therefore the inertia of the constraint may 

33 
be allowed for by adding 

140 
of its mass to the disc at the free end. 

From the above discussion, we find that when the mass of the constraint mC and the mass of 
the disc m at the free end is given, then natural frequency of vibration, 

 
fn 


Notes : 1. If both the ends of the constraint are fixed, and the disc is situated in the middle of it, then 
proceeding in the similar way as discussed above, we may prove that the inertia of the constraint may be 

13 
allowed for by adding 35 

of its mass to the disc. 

17 
2. If the constraint is like a simply supported beam, then 

of the disc. 
35 

of its mass may be added to the mass 

1 

2
s 

m  
33 mC 

140 



 

 

1 g 

2 

Simply supported beam with a central point 
load W. 

48 EI 
(at the centre)  

Wl 3 
4. 

(at the point load) 
3 EI l 

  
Wa 2b2 

 
Simply supported beam with an eccentric 

point load W. 
3. 

8EI 
(at the free end)  

wl 4 
 

Cantilever beam with a uniformly 

distributed load of w per unit length. 
2. 

3EI 
(at the free end)  

Wl3 
 

Cantilever beam with a point load W at the 

free end. 
1. 

Deflection () Type of beam S.No. 
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 Natural Fre quency of 
Free Transverse 
Vibrations Due to a Point 
Load Acting Over a Sim 
ply Supported Shaft 

Consider a shaft AB of length l, carrying a point load 
W at C which is at a distance of l1 from A and l2 from B, as 
shown in Fig. 23.6. A little consideration will show that 
when the shaft is deflected and suddenly released, it will 
make transverse vibrations. The deflection of the shaft is 
proportional to the load W and if the beam is deflected 
beyond the static equilibrium position then the load will 
vibrate with simple harmonic motion (as by a helical spring). 
If  is the static deflection due to load W, then the natural 
frequency of the free transverse vibration is 

0.4985 

Fig. 23.6. Simply supported beam 
with a point load. 

fn   Hz . . . (Substituting, g = 9.81 m/s2) 
 

Some of the values of the static deflection for the various types of beams and under various load 
conditions are given in the following table. 

Table 23.1. Values of static deflection () for the various types of beams and under 
various load conditions. 





 

Simply supported beam with a uniformly 
distributed load of 

load of w per unit length.
Fixed beam with8. 

 
Fixed beam with a central point load 7. 

 
Fixed beam with an eccentric point load 6. 

5. 

Type of beamS.No. 
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Solution. Given : l = 0.75 m ; 
N/m2; d = 50 mm = 0.05 m 

The shaft is shown in Fig. 23.7.

We know that moment of inertia of the shaft,

and static deflection at the load point (

Example 23.2. A shaft of length 0.75 m, supported freely at the ends, is carrying a body of 
mass 90 kg at 0.25 m from  one end. Find the natural frequency of transverse vibration. Assume   
E = 200 GN/m2 and shaft diameter

Simply supported beam with a uniformly 
distributed load of w per unit length. 

384EI 
(at the centre) 

wl 4 

per unit length. 
with a uniformly distr∵ibuted 

192EI 
(at the centre)  

Wl3
 

Fixed beam with a central point load W. 

(at the point load)  
Wa3b3   

 

3E I l 
Fixed beam with an eccentric point load W. 

(at the centre)   5    
wl 4 

384 EI 

Deflection () Type of beam 

Machines 

= 0.75 m ; m = 90 kg ; a = AC = 0.25 m ; E = 200 GN/m2 = 200 × 10

The shaft is shown in Fig. 23.7. 

We know that moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.05)4 m4

 

64 64 

 0.307 106 m4
 

static deflection at the load point (i.e. at point C), 

 
 
 

Fig. 23.7 

 
Wa2b2 


3EI l 

90  9.81(0.25)2 (0.5)2
 

 
 

3 200 109  0.307 106  0.75 

 
 0.110

. . . (∵b = BC = 0.5 m)

A shaft of length 0.75 m, supported freely at the ends, is carrying a body of 
one end. Find the natural frequency of transverse vibration. Assume   

diameter = 50 mm. 

(at the centre) 

(at the centre) 

(at the point load) 

(at the centre) 

= 200 × 109 

10 

 
3 m 

= 0.5 m) 

A shaft of length 0.75 m, supported freely at the ends, is carrying a body of 
one end. Find the natural frequency of transverse vibration. Assume   



 

n

n

Chapter

We know that natural frequency of transverse vibration,

f 

 

Solution. Given : d = 50 mm = 0.05 m ; 

know that cross-sectional area of shaft,

A 

and moment of inertia of shaft, 

I 

Natural frequency of longitudinal vibration
Let m1

 m – m1 
know that extension of length

Similarly, compression of length 

Since extension of length 
equations (i) and (ii), 

m1.l1 

m1  0.9

 Extension of length 

We know that natural frequency of 

f 

Natural frequency of transverse vibration
We know that the static deflection for a shaft fixed at both ends and carrying 

given by 



Example 23.3. A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both
ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the 
natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/m





n

n
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frequency of transverse vibration, 

f  
0.4985 


 0.4985 

0.1103 

 
= 49.85 Hz Ans. 

= 50 mm = 0.05 m ; m = 500 kg ; E = 200 GN/m2 = 200 × 109 N/m

sectional area of shaft, 

A  
 
 d 2  

 
(0.05)2  1.96 103 m2 

4 4 

I  
 
 d 4  

 
(0.05)4  0.307 106 m4 

64 64 

Natural frequency of longitudinal vibration 

1 = Mass of flywheel carried by the length l1. 

1 = Mass of flywheel carried by length l2. We 
know that extension of length l1 

 
W1.l1  

m1.g.l1 

A.E A.E  

Similarly, compression of length l2 

 
(W  W1) l2  

(m  m1) g.l2 

A.E A.E 

 

Fig. 23.8
 
 
 

 
 
 

Since extension of length l1 must be equal to compression of length l2, therefore equating 

l1  (m  m1 ) l2 

0.9  (500  m1) 0.6  300  0.6 m1 or 

 l1, 

 
m1  200 kg 

 
m1.g.l1 


A.E  

200  9.81 0.9 

1.96 103  200 109 
 4.5106 m 

We know that natural frequency of longitudinal vibration, 

f  
0.4985 

0.4985 

4.5106 

 
= 235 Hz Ans. 

Natural frequency of transverse vibration 
know that the static deflection for a shaft fixed at both ends and carrying a point load is 

Wa3b3 500  9.81(0.9)3 (0.6)3  
    1.24 10 

  

3E Il3 3  200 109  0.307 106 (1.5)3 

. . . (Substituting W = m.g ; a = l1, and 

A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both
the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the 

natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/m2. 
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N/m2 We 

 
Fig. 23.8 

. . . (i) 

. . . (ii) 

, therefore equating 

a point load is 

3  m 
 

, and b = l2) 

 

A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both 
the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the 

   

   



 

 


n
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We know that natural frequency of transverse vibration, 

f  
0.4985 


 0.4985 

1.24103 

 
= 14.24 Hz Ans. 

 

 Natural Frequency of 
Free Transverse 
Vibrations Due to 
Uniformly Distribute d 
Load Acting Over a Sim 
ply Supported Shaft 

Consider a shaft AB carrying a uniformly distributed load of w per unit length as shown in Fig. 
23.9. 

Let y1 = Static deflection at the middle of the shaft, 
a1= Amplitude of vibration at the middle of the shaft, and 

w1 = Uniformly distributed load per unit static deflection at the middle 
of the shaft = w/y1. 

 
Fig. 23.9. Simply supported shaft carrying a uniformly distributed load. 

Now, consider a small section of the shaft at a distance x from A and length x . 
Let y = Static deflection at a distance x from A, and 

a = Amplitude of its vibration. 
 Work done on this small section 

 
1 
 w .a .x  a  

1 
 

w 
 a .x  a  

1 
 w  

a1  a  x 
     

2 1 1 2 y 1 2 y 
1 1 

Since the maximum potential energy at the extreme position is equal to the amount of work 
done to move the beam from the mean position to one of its extreme positions, therefore 

Maximum potential energy at the extreme position 

l 

  1 
 w 

a1  a.dx  
. . . (i) 

0 
2 y1 

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection curve 
of a beam, therefore 

a1  
a  = Constant, C or 

a1  C 
 
and a = y.C 

y1 y y1 

Substituting these values in equation (i), we have maximum potential energy at the extreme 
position 

 l 



 

 

    
1 
 w  C  y.C.dx  

1 
 w.C 2 y.dx 

2 2 
0 0 

 
. . . (ii) 



 

 

 

l



Chapter 23 : Longitudinal and Transverse Vibrations • 923 

Since the maximum velocity at the mean position is .a1 , where  is the circular frequency of 
vibration, therefore 

Maximum kinetic energy at the mean position 
l l 

  1 
 

w.dx 
(.a)2  w 2 C2  y2.dx  . . . (iii) 

2 g 2g 
0 0 

. . .(Substituting a = y.C ) 
We know that the maximum potential energy at the extreme position is equal to the maximum 

kinetic energy at the mean position, therefore equating equations (ii) and (iii), 
l l 

1  w C2 y.dx 
 w 2  C2 y2.dx 

2 2g 
0 0 

 
l 

g  y.dx 

 2     0  or    

 y2.dx 
0 

. . . (iv) 

When the shaft is a simply supported, then the static deflection at a distance x from A is 
 

* y 
w 

24 EI 

 
( x4  2l x3  l3 x) 

 
. . . (v) 

where w = Uniformly distributed load unit length, 

E = Young’s modulus for the material of the shaft, and 

I = Moment of inertia of the shaft. 
 

* It has been proved in books on ‘Strength of Materials’ that maximum bending moment at a distance x 
from A is 

 
(B.M .)  EI 

d 2 y  
wx2 

 
wl x 

 
   

max 

Integrating this expression, 
dx2 2 2 

On further integrating, 

dy wx3 
EI.  

dx 2  3 
 

wx4 

wl . x2 
 

 

2  2 
C1

 

wl . x3 
E.I.y  

2  3  4 
 

2  2  3 
 C1x  C2 

 
wx4 

 
wlx3 

 


24 12 
C1x C2 

where C1 and C2 are the constants of integration and may be determined from the given conditions of 
the problem. Here 
when x = 0, y  = 0 ;  C2 = 0 

wl3 
and when x = l, y  = 0 ;  C1  =  

24 

Substituting the value of C1, we get 

y  
w

 
24 EI 

(x4  2l x3  l3x) 

l 

g y.dx 
    0  
l 

 y2.dx 
0 



 



 


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A  railway bridge. 

Now integrating the above equation (v) within the limits from 0 to l, 
 

l 

 y dx 


l w  (x4  2 lx3  l3 x) dx  w  x5 

  
2 lx4 

l3 x2 l 


24 EI 
0 0 

24 EI  5 4 2 0
 

 

w l5 2l5 l5  w l5 w.l5  
24 EI  5 

 
4 
 

2  
 

24 EI 
 

5 
 

120 
E.I 

. . . (vi) 

 
l l      w 2 

Now  y2dx  
0 0 

 24 EI 
(x4  2l x3  l3x) dx 




 w    
2   l

 

  
24 EI 


  (x8  4 l 2 x6  l6 x2  4l x7  4 l 4 x4  2 l 3 x5 ) dx 

0 
 

w2  x9 4 l2 x7
 l6 x3 4 lx8

 4 l4 x5
 2 l3 x6 

l
 

 
576 E2 I 2 

 
 9  

 
7 

  
3 8 5 

 
6 0

 
 

 
w2 l9 

 
4l9 l9 

 
    

4l9 
 

4l9 
 

2l9 
576 E2 I 2 

 9 7   3 8 5 6 

 
 

w2 

576 E2 I 2 

 

 
31l9 

630 

 
 

. . . (vii) 

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency due 
to uniformly distributed load, 

 
  

 
g  120 EI 




 wl5 576 E2 I 2  630 

 w2  31l9 

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 Natural frequency due to uniformly distributed load,

f   

We know that the static deflection of a simply supported shaft due to uniformly distributed load 
of w per unit length, is 

Equation (ix) may be written as
 

f
 

 

Consider a shaft AB fixed at both ends and 
carrying a uniformly distributed load of 
length as shown in Fig. 23.10. 

We know that the static deflection at a 
distance x from A is given by 

 
* y 

w 

24 EI 
(x4  l2 

 
 

* It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance 

 
 

Integrating this equation, 
dy

EI  
dx

 
where C is the constant of integration. We know that when

1 
 

 
or EI 

Integrating the above equation,

EI

where C2 is the constant of integration. We know that when 

2 

2
EI g 

wl4 

 5 g 

2 384 S S 

n
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 
24 EI  

630 
g  2  

wl4 155 

Natural frequency due to uniformly distributed load, 

f     
 

 
2



We know that the static deflection of a simply supported shaft due to uniformly distributed load 

S 
5 wl4 

 
 

384 EI 
or 

EI 
wl4 

 
5 

384 S 
may be written as 

fn   
0.5615 

 

 
Hz . . . (Substituting, g = 9.81

 Natural Fre quency
Free Tra nsverse 
Vibrations of a Shaft
d at Both Ends Carrying 
a Uniformly Distribute 
Load 

fixed at both ends and 
carrying a uniformly distributed load of w per unit 

We know that the static deflection at a 

2 x2  2lx3 ) 
 
. . . (i) 

Fig. 23.10. Shaft fixed at both ends
carrying a uniformly distributed load.

It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance x 
d 2 y wl2 wx2 wlx 

M  EI 
dx2 

 
12 

 
2 
 

2
 

dy wl2 wx3 wlx2 
   x      C1 
dx  12  2  3  2  2 

is the constant of integration. We know that when x  0, 
dy 

 0 . Therefore C 
 

 

 

 
dy 

 
wl2 

 
wx3 

x  

dx 1 

wlx2 
 

 

dx 
Integrating the above equation, 

12 6 4 

wl2 x2 wx4 wl x3 wl2 x2 wx4 wlx3 
EI.y   

12  2 6  4 
  C 

4 3 
 

24 24 12 
 C2

is the constant of integration. We know that when x = 0, y = 0. Therefore C2 = 0. 

EI g 

wl4 

 EIg 

2 wl4 

• 925 

. . . (viii) 

. . . (ix) 

We know that the static deflection of a simply supported shaft due to uniformly distributed load 

9.81 m/s2) 

quency of 

Shaft Fixe 
Carrying 

Uniformly Distribute d 

Shaft fixed at both ends 
carrying a uniformly distributed load. 

x from A is 

 
 
= 0. 

 



 



 

 

or EI.y  
w 

(l 2x2  x4  2lx3) 
24 

or y 
w 

 
 

24 EI 
(x4  l2 x2  2 lx3) 



 

 

S 

 

 

n

926 • Theory of Machines 

Integrating the above equation within limits from 0 to l, 
 

 
w  x5 l2 x3 2l x4  

l
 w   l5 l5 2l5  

24 EI 
 5  

   
3   

    
4      

 
24 EI 

 5  
  

3  
   

4 
  0  

 
w  

l5  
wl5 

24 EI 30 720 EI 
Now integrating y2 within the limits from 0 to l, 

 w    
2   l

 

 y2 dx     ( x4  l 2 x2  2l x3 )2 dx 

0  24 EI  0
 

 w 
2 l

 

  24 EI 
  (x8  l4x4  4l 2x6  2l 2x6  4l x7  2l3x5) dx 

0 
 w 

2 l
 

  24 EI 
  (x8  l4x4  6l2x6  4l x7  2l 3x5) dx 

0 

 w 
2  x9 

 
l4 x5 

 
6l2x7 

 
4l x8 2l3x6  

l
   

24 EI 


 9  

   
5   

 
7    

8   
 

6 


     0 

 w    
2  l9 l9 6l9 4l 9 2l9   w 

2 
l9   24 EI   9 

 
5 
 

7 
 

8 
 

6  
  24 EI  

630 
 

We know that 
      

l 

g  y dx 

2  
0
  g  wl5 

 
(24 EI )2  630  

504 EIg 
   

 
 

 


and natural frequency, 

l 

 y2 dx 
0 

 

  

720 EI w2l9   wl 4 

f  
 


2
 3.573 

Since the static deflection of a shaft fixed at both ends and carrying a uniformly distributed 
load is 

  
wl 4 EI   

1 
 

  

S 384 EI or 
wl4

 384 S 

 fn  3.573  
0.571 Hz . . . (Substituting, g = 9.81 m/s2) 

3 2l x ) dx 2 2 l x 4 (x 

l 


0 

    w  

24 EI 
y dx 

l 


0 

504 EIg 

wl4 

1 504 EIg 

2 wl 4 

E I g 

wl 4 

g 

384 S 

l
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 Natural Fre quen cy of 
Free Transverse 
Vibrations For a Shaft 
Subjected to a Number 
of Point Loads 

Consider a shaft AB of negligible mass loaded with 
point loads W1 , W2, W3 and W4 etc. in newtons, as shown in 
Fig. 23.11. Let m1, m2, m3 and m4 etc. be the corre- sponding 
masses in kg. The natural frequency of such a shaft may be 
found out by the following two methods : 

1. Energy (or Rayleigh’s) method 

Let y1, y2, y3, y4 etc. be total deflection under loads 
W1, W2, W3 and W4 etc. as shown in Fig. 23.11. We 

know that maximum potential energy 
Fig. 23.11. Shaft carrying a 

number of point loads. 

 
1 
 m .g.y  

1 
 m .g.y  

1 
m .g.y  

1 
 m .g.y 

    

 
 ..... 

2 1 1 2 2 2 2   3 3 2 4 4 

 

 
1 
 m.g.y 

2 

and maximum kinetic energy 

 
1 
 m (.y )2  

1 
 m 

  

 
 

(.y )2  
1 
 m 

 

 
 

(.y )2  
1 
 m 

 

 
 
 

 
(.y 

 
 
 
 
)2  ...... 

2 1 1 2 2 2 2 3 3 2 4 4 

 

 
1 
 2 m ( y )2  m  ( y  )2  m  ( y  )2  m  ( y )2  ..... 

2   1 1 2 2 3 3 4 4 


 
1 
 2 m.y2 

2 

 
. . . ( where  = Circular frequency of vibration) 

Equating the maximum kinetic energy to the maximum potential energy, we have 

1 
 2  m.y2  

1 
 m.g.y 

2 2 
 

 2  
 m.g.y  

g  m.y 
  

 
or    

 m. y2  m. y2 

 Natural frequency of transverse vibration, 
 


fn  

2 




2. Dunkerley’s method 
The natural frequency of transverse vibration for a shaft carrying a number of point loads and 

uniformly distributed load is obtained from Dunkerley’s empirical formula. According to this 

g  m.y 

 m.y2 

1 g  m.y 

2  m.y2 



 

 

1 

( fn )
2 
 

1 

( fn1 )
2 
 

1 

( fn2 )
2 
 

1 

( fn3 )
2 

 
 .... 

1 
 

 

( fns )
2 



 

1 

2 

3 

n

n

n

f 

1

2

• Theory of Machines 

where fn = Natural frequency of transverse vibration of the shaft 
carrying point loads and uniformly distributed load. 

fn1 , fn2 , fn3 , etc. = Natural frequency of transverse vibration of each point load. 

fns = Natural frequency of transverse vibration of the uniformly distributed 

load (or due to the mass of the shaft). 

Now, consider a shaft AB loaded as shown in Fig. 23.12. 
 

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load. 

Let 1, 2 , 3, etc. = Static deflection due to the load W1, W2, W3 etc. when considered 

separately. 

S = Static deflection due to the uniformly distributed load or due  to 

the mass of the 
shaft. 

We know that natural frequency of transverse 
vibration due to load W1, 

f  
0.4985 

Hz
 

 

Similarly, natural frequency of transverse vibra- 
tion due to load W2, 

f  
0.4985 

Hz
 

 

and, natural frequency of transverse vibration due to load 

W3, 

f  
0.4985 Hz 

3 

Also natural frequency of transverse vibration due 
to uniformly distributed load or weight of the shaft, 

0.5615 
ns 

 
Therefore, according to Dunkerley’s empirical 

formula, the natural frequency of the whole system, 

Suspension spring of an automobile. 
Note : This picture is given as additional 

information and is not a direct example of the 
current chapter. 

1 

( fn )2 
 

1 

( fn1 )
2 

 
1 

 
1 

( fn2 )2 



 
1 

( fn3 )
3 

2 


 .... 



3 

1 
 

 

( fns )
2 

 ....  
S

 
 

(0.4985)2 (0.4985)2 (0.4985)2 (0.5615)2 

 
1 

     .... 




S 




(0.4985)2 

        

1 2 3
 1.27 

S 
Hz 



 

Example 23.4. A shaft 50
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support. 
The Young's modulus for shaft material

Chapter
 

or f

 

Notes : 1. When there is no uniformly distributed load or mass of the shaft is negligible, then 

 
 

2. The value of 1, 2 , 3 etc. for a simply supported shaft may be obtained from the relation

where 

a and 

Solution. Given : d = 50 mm = 0.05 m ; 
W3 = 750 N; E = 200 GN/m2 = 200 × 10

The shaft carrying the loads is shown 

We know that moment of inertia of the shaft,

and the static deflection due to a point load 

 
 

 

 Static deflection due

1  2  3  .... 

1000   1 2 3 

50 mm diameter and 3 metres long is simply supported at
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support. 

material is 200 GN/m2. Find the frequency of transverse vibration.
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 fn 
0.4985 

Hz 

When there is no uniformly distributed load or mass of the shaft is negligible, then S  0 

 fn 
0.4985 

Hz
 

etc. for a simply supported shaft may be obtained from the relation

 
Wa2b2 

3 EIl 

  = Static deflection due to load W, 

and b = Distances of the load from the ends, 

E = Young’s modulus for the material of the shaft, 

I = Moment of inertia of the shaft, and 

l = Total length of the shaft. 

= 50 mm = 0.05 m ; l = 3 m, W1 = 1000 N ; W2 = 1500 N ; 
= 200 × 109 N/m2 

The shaft carrying the loads is shown in Fig. 23.13 

We know that moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.05)4  0.307 106 m4

 

64 64 

and the static deflection due to a point load W, 

  
Wa2b2

 

3 EIl 

 

Fig. 23.13 

due to a load of 1000 N, 

  2   2 
1   

3 200109  0.307 106 3 
 7.2410 m

 
. . . (Here a = 1 m, and b 

      ....  

1 2 3 
     S  

1.27 

at the ends 
and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support. 

vibration. 

•  

0 . 

etc. for a simply supported shaft may be obtained from the relation 

b = 2 m) 
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Similarly, static deflection due to a load of 1500 N,



 
and static deflection due to a load of 750 N,

We know that frequency of transverse vibration,

 
In actual practice, a rotating shaft carries different mountings and accessories in the form of

gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the pulley or 
gear does not coincide with the centre line of the bearings or with the axis of the shaft, when the shaft is 
stationary. This means that the centre
axis of rotation and due to this, the shaft is subjected to centrifugal force. This force will bent the shaft 
which will further increase the distance of centre of gravity of the pulley or
rotation. This correspondingly increases the value of centrifugal force, which further increases the 
distance of centre of gravity from the axis of rotation. This effect is cumulative and ultimately the shaft 
fails. The bending of shaft not only depends upon the value of eccentricity (distance between centre of 
gravity of the pulley and the axis of rotation) but also depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflec
from the axis of rotation becomes infinite, is known as critical or whirling 

speed. 
(a) When shaft is stationary.

Fig. 23.14. 

Consider a shaft of negligible mass carrying 
on the shaft axis and G is the centre of gravity of the 
of the bearing and the axis of the shaft coincides. Fig. 23.14 (
axis of rotation at a uniform speed

Let 

    2.1210 

Machines 

Similarly, static deflection due to a load of 1500 N, 

1500  22 12 
2  

3 200109  0.307 106  3 
 10.8610

 

 
 
 

3 m 

and static deflection due to a load of 750 N, 
. . . (Here a = 2 m, and b 

750 (2.5)2 (0.5)2 3 m 
3 

3 200 109  0.307 106  3 

We know that frequency of transverse vibration, 
. . . (Here a = 2.5 m, and b = 0.5 m)

fn 
0.4985 

 
0.4985 

7.24 103 10.86 103  2.1210

 
0.4985 

= 3.5 Hz Ans. 
0.1422 

 Critic al or Whirling 
In actual practice, a rotating shaft carries different mountings and accessories in the form of

gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the pulley or 
gear does not coincide with the centre line of the bearings or with the axis of the shaft, when the shaft is 
stationary. This means that the centre of gravity of the pulley or gear is at a certain distance from the 
axis of rotation and due to this, the shaft is subjected to centrifugal force. This force will bent the shaft 
which will further increase the distance of centre of gravity of the pulley or gear from the axis of 
rotation. This correspondingly increases the value of centrifugal force, which further increases the 
distance of centre of gravity from the axis of rotation. This effect is cumulative and ultimately the shaft 

aft not only depends upon the value of eccentricity (distance between centre of 
gravity of the pulley and the axis of rotation) but also depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflection of the shaft 
from the axis of rotation becomes infinite, is known as critical or whirling 

stationary. (b) When shaft is rotating. 

Fig. 23.14. Critical or whirling speed of a shaft. 

Consider a shaft of negligible mass carrying a rotor, as shown in Fig.23.14 (a). The point 
is the centre of gravity of the rotor. When the shaft is stationary, the centre line 

of the bearing and the axis of the shaft coincides. Fig. 23.14 (b) shows the shaft when rotating 
speed of  rad/s. 

 m = Mass of the rotor, 
e = Initial distance of centre of gravity of the rotor from 

line of the bearing or shaft axis, when the shaft is stationary,

1  2  3 

b = 1 m) 

= 0.5 m) 

103
 

Whirling Speed of a Shaft 
In actual practice, a rotating shaft carries different mountings and accessories in the form of 

gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the pulley or 
gear does not coincide with the centre line of the bearings or with the axis of the shaft, when the shaft is 

of gravity of the pulley or gear is at a certain distance from the 
axis of rotation and due to this, the shaft is subjected to centrifugal force. This force will bent the shaft 

gear from the axis of 
rotation. This correspondingly increases the value of centrifugal force, which further increases the 
distance of centre of gravity from the axis of rotation. This effect is cumulative and ultimately the shaft 

aft not only depends upon the value of eccentricity (distance between centre of 
gravity of the pulley and the axis of rotation) but also depends upon the speed at which the shaft rotates. 

tion of the shaft 
from the axis of rotation becomes infinite, is known as critical or whirling 

). The point O is 
When the shaft is stationary, the centre line 

 about the 

 the centre 
stationary, 



 

 

s 

m 

s 

m 

g 



1 g 

2  
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y = Additional deflection of centre of gravity of the rotor when the 

shaft starts rotating at  rad/s, and 

s = Stiffness of the shaft i.e. the load required per unit deflection of 
the shaft. 

Since the shaft is rotating at  rad/s, therefore centrifugal force acting radially outwards 
through G causing the shaft to deflect is given by 

FC  m.2 ( y  e) 

The shaft behaves like a spring. Therefore the force resisting the deflection y, 

= s.y 

For the equilibrium position, 

m.2 ( y  e)  s.y 

or m.2.y  m.2.e  s.y or y (s  m.2 )  m.2 .e 

m.2.e 2.e 
y  

s  m.2 s / m  2
 

. . . (i) 

We know that circular frequency, 

 
n  or 

 
2 .e 

y 
( )2  2

 

 
 

. . . [ From equation (i) ] 

n 

A little consideration will show that when  n , the value of y will be negative and the shaft 

deflects is the opposite direction as shown dotted in Fig 23.14 (b). 

In order to have the value of y always positive, both plus and minus signs are taken. 

 
 y    (

2e 
)2  2

 
 e 
   

2
 

 e 
   

2
 

n 
    n   1     c   1 
      

... (Substituting n  c ) 

We see from the above expression that when n  c , the value of y becomes infinite. 

Therefore c is the critical or whirling speed. 

 Critical or whirling speed, 
         


Hz . . . 




m.g 
c n ∵      

s  
 

If Nc is the critical or whirling speed in r.p.s., then 

2 Nc  or Nc   
0.4985 

r.p.s. 
 

where  = Static deflection of the shaft in metres. 

Hence the critical or whirling speed is the same as the natural frequency of 
transverse vibration but its unit will be revolutions per second. 

g 




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Notes : 1. When the centre of gravity of 
rotor lies between the centre line of the 
and the centre line of the bearing, 
negative. On the other hand, if the centre of 
gravity of the rotor does not lie between 
centre line of the shaft and the centre line 
the bearing (as in the above article) the 
of e is taken positive. 

2. To determine the critical speed of 
shaft which may be subjected to point 
uniformly distributed load or combination of 
both, find the frequency of transverse vibration 
which is equal to critical speed of
r.p.s. The Dunkerley’s method may be used for 
calculating the frequency. 

3. A shaft supported is short bearings 
(or ball bearings) is assumed to be a simply
ported shaft while the shaft supported in 
bearings (or journal bearings) is assumed to 
have both ends fixed. 

 

Solution. Given : d = 20 mm = 0.02 m ; 
= 40 × 106 g/m3 = 40 × 103 kg/m3 

The shaft is shown in Fig. 

We know that moment of inertia of the shaft,

Since the density of shaft material is 40 × 10
therefore mass of the shaft per metre length,

We know that static deflection due to 1 kg of mass at the centre,

and static deflection due to mass of the shaft,

 

Example 23.5. Calculate the 
whirling speed of a shaft 20 mm diameter 
and 0.6 m long carrying a mass of 1 kg at 
its mid-point. The density of the shaft ma
terial is 40 Mg/m3, and Young’s modulus is

Induction Compression Exhaust 

Fuel injector Power 
Intake 
valve 

Air intake 

 
Piston

Compressed air 
Crankshaft 

and fuel mixture Fuel injection 
and combustion

When the centre of gravity of the 
rotor lies between the centre line of the shaft 
and the centre line of the bearing, e is taken 
negative. On the other hand, if the centre of 
gravity of the rotor does not lie between the 

of the shaft and the centre line of 
the bearing (as in the above article) the value 

determine the critical speed of a 
shaft which may be subjected to point loads, 
uniformly distributed load or combination of 

frequency of transverse vibration 
of a shaft in 

r.p.s. The Dunkerley’s method may be used for 

A shaft supported is short bearings 
simply sup- 

ported shaft while the shaft supported in long 
bearings (or journal bearings) is assumed to 

 
 
 

Diesel engines have several advantages over 
engines. They do not need an electrical ignition
they use cheaper fuel; and they do not 
carburettor. Diesel engines also have a greater ability 
to convert the stored energy in the fuel into mechanical 
energy, or work. 
Note : This picture is given as additional information and is 

not a direct example of the current chapter.

= 20 mm = 0.02 m ; l = 0.6 m ; m1 = 1 kg ;  = 40 Mg/m3 
 ; E = 200 GN/m2 = 200 × 109 N/m2 

The shaft is shown in Fig. 23.15. 

We know that moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.02)4 m4

 

64 64 

= 7.855 × 10–9 m4 

Since the density of shaft material is 40 × 103 kg/m3, 
therefore mass of the shaft per metre length, 

 
 
 

Fig. 23.15 

m  Area  length  density  
 

(0.02)2 1 40103 S 4 = 12.6 kg/m

We know that static deflection due to 1 kg of mass at the centre, 

Wl3 1 9.81(0.6)3 6 
 

  
48 EI 

 
48  200 109  7.855 109 

 28 10 m

and static deflection due to mass of the shaft, 

5 wl 4 5 12.6  9.81(0.6)4 

S   
384 EI 

 
384  200 109  7.855 109 

 0.13310 

200 GN/m2. Assume the shaft to be freely supported.

Calculate the 
whirling speed of a shaft 20 mm diameter 
and 0.6 m long carrying a mass of 1 kg at 

point. The density of the shaft ma-
, and Young’s modulus is 

Exhaust 
valve 
Burned 
gases 

 
Piston 

and combustion 

over petrol 
ignition system; 

not need a 
a greater ability 

mechanical 

Note : This picture is given as additional information and is 
not a direct example of the current chapter. 

 

= 12.6 kg/m 

m
 

 3 

 m
 

freely supported. 



 

 

  S  

1.27 

Fig. 23.16 

Example 23.6. A shaft 1.5 m long, supported in flexible bearings at the ends carries two 
wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a 
distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm 
and internal diameter 40 mm. The density of the shaft material is 7700 kg/m3 and its modulus of 
elasticity is 200 GN/m2. Find the lowest whirling speed of the shaft, taking into account the mass 
of the shaft. 

28 10 

 

 
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 Frequency of transverse vibration, 
 

fn 
0.4985 


 0.4985 

6 0.133103 

 
 

0.4985 

11.52103 

 

 
= 43.3 Hz 

1.27 

Let Nc= Whirling speed of a shaft. 

We know that whirling speed of a shaft in r.p.s. is equal to the frequency of transverse 
vibration in Hz , therefore 

Nc = 43.3 r.p.s. = 43.3 × 60 = 2598 r.p.m. Ans. 

 
 
 
 
 
 

Solution. l = 1.5 m ; m1 = m2 = 50 kg ; 

d1 = 75 mm = 0.075 m ; d2 = 40 mm = 0.04 m ; 
 = 7700 kg/m3 ; E = 200 GN/m2 = 200 × 109 

N/m2 

The shaft is shown in Fig. 23.16. 

We know that moment of inertia of the shaft, 

I  
 (d1)4  (d2 )

4  
64 

 (0.075)4  (0.04)4   1.4 106 m4
 

64  


length, 
Since the density of shaft material is 7700 kg/m3, therefore mass of the shaft per metre 

mS = Area × length × density 

 
 (0.075)2  (0.04)2 1 7700 = 24.34 kg/m 
4 

We know that the static deflection due to a load W 

 
Wa2b2 

 
m.ga2b2

 

3 EIl 3 EIl 

 Static deflection due to a mass of 50 kg at C, 

  
m1ga2b2 




50  9.81(0.375)2 (1.125)2
 

 
 1 3 EIl 3 200 109 1.4 106 1.5 

= 70 × 10 m 

. . . (Here a = 0.375 m, and b = 1.125 m) 
Similarly, static deflection due to a mass of 50 kg at D 

  
m1ga2b2 




50  9.81(0.75)2 (0.75)2
 

 
 2 3 EIl 3 200 109 1.4 106 1.5 

= 123 × 10 m 

. . . (Here a = b = 0.75 m) 

–6

–6



 

 

Example 23.7. A vertical shaft of 5 mm diameter is 200 mm long and is supported in long 
bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any 
increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation 
and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre 
of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m2. 

• Theory of Machines 

We know that static deflection due to uniformly distributed load or mass of the shaft, 

  
5

  
wl 4 



5   
   

24.34  9.81(1.5)4 –6 
 

  

S 
384 EI 384 200109 1.4106 

= 56 × 10 m 

 
We know that frequency of transverse vibration, 

. . . (Substituting, w = mS × g) 

fn 
0.4985 





0.4985  

Hz 
56 106 

1   2     S 
 

1.27 
70 106  123106  

1.27 
= 32.4 Hz 

Since the whirling speed of shaft (Nc ) in r.p.s. is equal to the frequency of transverse vibration 
in Hz, therefore 

Nc = 32.4 r.p.s. = 32.4 × 60 = 1944 r.p.m. Ans. 

Solution. Given : d = 5 mm = 0.005 m ; l = 200 mm = 0.2 m ; m = 50 kg ; e = 0.25 mm 
= 0.25 × 10–3 m ; E = 200 GN/m2 = 200 × 109 N/m2 

Critical speed of rotation 
We know that moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.005)4  30.7 1012 m4 

64 64 

Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We know 
that the static deflection at the centre of the shaft due to a mass of 50 kg, 

 
Wl3 

 50  9.81(0.2)3 
9 

 
 3.33103 m 

192 EI 192  200 10  30.7 10  
. . . (∵ W = m.g) 

We know that critical speed of rotation (or natural frequency of transverse vibrations), 
 

Nc 


Maximum bending stress 

0.4985 

3.33103 

 
= 8.64 r.p.s. Ans. 

Let  = Maximum bending stress in N/m2, and 
N = Speed of the shaft = 75% of critical speed = 0.75 Nc . . . (Given) 

When the shaft starts rotating, the additional dynamic load (W1) to which the shaft is subjected, 
may be obtained by using the bending equation, 

M   


I y1 
or M  

.I 

y1 

12 
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We know that for a shaft fixed at both ends and carrying a point load (W1) at the centre, the 

maximum bending moment 

M  
W1.l 

8 

 
W1.l  

 I 
  

. . .(∵ y 
 
= d / 2) 

 
 and 

8 d / 2 

.I 8 
 

  

1 
 

 30.7 1012 8 6 
 

W1  
d / 2 

 
l 



0.005 / 2 
  0.49 10  N 

0.2 
 Additional deflection due to load W1, 

y  
W1   

0.49 106   3.33103  3.327 1012 
 

W 
We know that 

50  9.81 

y  
e 

 c 
2

 
 

 

 
e 

 Nc  1 
 

 

 
 . . . (Substituting   N 

 
 and  N ) 

  1  N   c c 
    


3.327 1012    0.25 103

 
 
  0.32 103

 
 N 

2
 

 c  1 

 0.75 Nc 

  0.32 103 / 3.327 1012  0.0962 109 N / m2
 

= 96.2 × 106 N/m2 = 96.2 MN/m2 Ans. 

( Taking + ve sign ) 

 

 
Solution. Given : d = 15 mm = 0.015 m ; l = 1 m ; m = 15 kg ; e = 0.3 mm 

= 0.3 × 10–3 m ; E = 200 GN/m2 = 200 × 109 N/m2 ;  = 70 MN/m2 = 70 × 106 N/m2 
We know that moment of inertia of the shaft, 

I  
 
 d 4  

 
(0.015)4  2.5 109 m4

 

64 64 

1. Critical speed of the shaft 
Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ends. We 

know that the static deflection at the centre of shaft, 

 
Wl3 

 15  9.8113 
9 

 
 1.5103 m 

 
(∵ W = m.g) 

192 EI 192  200 10  2.510 

, where  and M are maximum deflection and bending moment respectively]. 
W .l 

8 
and M = 

, 
192 EI 

Wl3 
[For a shaft with fixed end carrying a concentrated load (W) at the centre assume    

Example 23.8. A vertical steel shaft 15 mm diameter is held in long bearings 1 metre 
apart and carries at its middle a disc of mass 15 kg. The eccentricity of the centre of gravity of the 
disc from the centre of the rotor is 0.30 mm. 

The modulus of elasticity for the shaft material is 200 GN/m2 and the permissible stress is 
70 MN/m2. Determine : 1. The critical speed of the shaft and 2. The range of speed over which it  
is unsafe to run the shaft. Neglect the mass of the shaft. 

9 



 

 



1.16 0.84 

M   
.I 

y1 
or 

M   


I y1 

• Theory of Machines 

 Natural frequency of transverse vibrations, 

fn  0.4985  0.4985 

1.5 103
 

 12.88 Hz 

We know that the critical speed of the shaft in r.p.s. is equal to the natural frequency of 
transverse vibrations in Hz. 

 Critical speed of the shaft, 
Nc = 12.88 r.p.s. = 12.88 × 60 = 772.8 r.p.m. Ans. 

2. Range of speed 
Let N1 and N2 = Minimum and maximum speed respectively. 
When the shaft starts rotating, the additional dynamic load (W1 = m1.g) to which the shaft is 

subjected may be obtained from the relation 
 

 

Since M  
W1.l 

 
m1.g.l 

8 8 
, and y1  

d 
, therefore 

2 

m1.g.l 



8 

 
or m1  

.I 

d / 2 

8  2   I 

d.g.l 

 
 
 

8  2  70 106  2.5 109 

0.015  9.811 

 
 
 

 19 kg 

 Additional deflection due to load W1 = m1g, 

y  
W1    

m1    
19 

1.5103  1.9 103 m 

 
We know that, 

W m 
 
 

y  
e 

   2 

15 

or  
y 
 

1
 e  Nc 
2
 

 


 c 
 1   1 

     N 

. . . (Substituting, c  Nc 

 
, and   N ) 

3  N 2 0.3 

  
1.9 10  

1 
0.3 103  N 

2
 

or 
    c 


  N 

1      0.16 
1.9 

 
 N 2 

 c  1 
 N 


    c 




  N 
 1 0.16  1.16  or 0.84 

. . . (Taking first plus sign and then negative sign) 

or N    Nc or 
Nc

 



 

 

1.16 

m 
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 N1  
Nc

  
772.8 

 718 r.p.m. 
1.16 

 
and N 2  

Nc
  

772.8 
 843 r.p.m. 

0.84 0.84 
Hence the range of speed is from 718 r.p.m. to 843 r.p.m. Ans. 

 Frequency of Free Damped Vibrations 
(Viscous Damping) 

We have already discussed that the motion of a body is resisted by frictional forces. In 
vibrating systems, the effect of friction is referred to as damping. The damping provided by fluid 
resistance is known as viscous damping. 

We have also discussed that in damped 
vibrations, the amplitude of the resulting vibration 
gradually diminishes. This is due to the reason that a 
certain amount of energy is always dissipated to 
overcome the frictional resistance. The resistance to 
the motion of the body is provided partly by the 
medium in which the vibration takes place and 
partly by the internal friction, and in some cases 
partly by a dash pot or other external damping 
device. 

Consider a vibrating system, as shown in 
Fig. 23.17, in which a mass is suspended from one 
end of the spiral spring and the other end of which is 
fixed. A damper is provided between the mass and 
the rigid support. 

Let m = Mass suspended from the spring, 

s = Stiffness of the spring, 

x = Displacement of the mass from the 
mean position at time t, 

 = Static deflection of the spring 
= m.g/s, and 

 
Fig. 23.17. Frequency of free damped 

vibrations. 

c = Damping coefficient or the damping force 
per unit velocity. 

Since in viscous damping, it is assumed that the frictional 
resistance to the motion of the body is directly proportional to the 
speed of the movement, therefore 

Damping force or frictional force on the mass acting in 
opposite direction to the motion of the mass 

 c  
dx

 
dt 

Accelerating force on the mass, acting along the motion 
of the mass 

 
d 2 x 

 

 
 
 
 
 
 
 
 
 
 
 

 
Riveting Machine 

Note : This picture is given as 
additional information and is not a 

dt2 direct example of the current chapter. 



 

 

dt 

• Theory of Machines 

and spring force on the mass, acting in opposite direction to the motion of the mass, 

= s.x 
Therefore the equation of motion becomes 

d 2 x  dx 
m  

dt2 

 
d 2 x dx 

  c   s.x 
 

(Negative sign indicates that the force opposes the motion) 

or m  c   s.x  0 
dt2 dt 

*  d 2 x c dx s 
or 

dt 2
     x  0 

m dt m 

This is a differential equation of the second order. Assuming a solution of the form 
x = ek t where k is a constant to be determined. Now the above differential equation reduces to 

 
2   kt c 

 
kt s kt 

 
 

 dx kt 
 

 

d 2 x 
 

 

2 kt 
k .e   k.e

m 
  e  0 

m  ∵ 


 ke 
dt , and 

dt2  k .e 



or k 2  
c 
 k  

s 
 0 

m m 
 

c 

 
 

 c 2 s 

 
. . . (i) 

 
m 
  m 

  4 m 
and k      

2 
 

 
c 


2m 
 
 
 
 
 
 

and 

 The two roots of the equation are 
 

k1  
c 


2m 

 
k2  

c 


2m 

The most general solution of the differential equation (i) with its right hand side equal to 
zero has only complementary function and it is given by 

x  C1e
k1t  C2 e

k2t
 

 

. . . (ii) 

where C1 and C2 are two arbitrary constants which are to be determined from the initial conditions of 
the motion of the mass. 

It may be noted that the roots k1 and k2 may be real, complex conjugate (imaginary) or equal. 
We shall now discuss these three cases as below : 

 

*  A system described by this equation is said to be a single degree of freedom harmonic oscillator with 
viscous damping. 

 c 2 

 s 
 2m   m 

 c 2 

 2m 

 
s 

m 

 c 2 
 
 2m 


s 

m 

 



 

 

2m 

 
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1. When the roots are real (overdamping) 
 

  c  2 s 
If   

 
 

m 
, then the roots k1 and k2 are real but negative. This is a case of overdamping 

or large damping and the mass moves slowly to the equilibrium position. This motion is known as 
aperiodic. When the roots are real, the most general solution of the differential equation is 

x  C1e
k1t  C2e

k2t
 

    c  c 2 
 

 

s   c  c 2 s 

 
    t  

 
    t 

   2m  2m     m   2m  2m  m 

 C1 e  

Note : In actual practice, the overdamped vibrations are avoided. 

 C2 e  

2. When the roots are complex conjugate (underdamping) 
 

s  c 2 
If 

m 
  2m 

, then the radical (i.e. the term under the square root) becomes negative. 

The two roots k1 and k2 are then known as complex conjugate. This is a most practical case of 
damping and it is known as underdamping or small damping. The two roots are 

 
k  

c 
 i 

1 2m 
 

c 
and k2    i 

2m 

where i is a Greek letter known as iota and its value is 

lations, let 

. For the sake of mathematical calcu- 

 

c s 2 
 

2m 
 a; 

m 
 (n ) ; and 

Therefore the two roots may be written as 

 d 

k1  a  i d ; and k2  a  i d 

We know that the general solution of a differential equation is 

x  C1 e
k1t  C2 e

k2t  C1 e
(aid )t  C2 e

(aid )t 

 eat (C1 e
id .t  C2 e

id t ) 

Now according to Euler’s theorem 

(Using em + n = em × en) (iii) 

 
 
 
 
 
 

Let 

ei   cos   i sin  ; and ei   cos   i sin 
Therefore the equation (iii) may be written as 

x  eat C1(cosd .t  i sin d .t)  C2 (cosd .t  i sin d .t)
 eat (C1  C2 ) cos d .t  i (C1  C2 ) sin d .t )

C1  C2  A, and i (C1  C2 )  B 

  
m 2m 

s  c 2 

 

  
m 2m 

s  c 2 

 

1

s 

m 
 
 c 2 

 2m 
 (n )

2  a2 



 

 

s  c 2 

m 
– 
 2m 



1 

2
(n )

2  a2
 

t p  
2 


2

d 
 

2

(n )
2  a2

 

m 

2 
s 
  

c 
 2m  
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 x  eat ( Acos d .t  B sin d .t) . . . (iv) 

Again, let A  C cos  , and B  C sin  , therefore 
B 

C 
Now the equation (iv) becomes 

, and tan    
A 

x  eat (C cos cos d .t  C sin sin d .t) 

 Ceat cos (d .t  ) 

 
 

. . . (v) 
If t is measured from the instant at which the mass m is released after an initial displace- ment 

A, then 

 
and when 

A  C cos  . . . [Substituting x = A and t = 0 in equation (v)] 

 0 , then A = C 
 
 
 

where 

 The equation (v) may be written as 

x  Aeat cos d .t 

 
d   





; and 

 
 
a  

c
 

2m 

 
. . . (vi) 

We see from equation (vi), that the motion of the mass is simple harmonic whose circular 

damped frequency is d and the amplitude is Aeat
 which diminishes exponentially with time as 

shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its 
inertia, yet it overshoots and the oscillations may take some considerable time to die away. 

 

Fig. 23.18. Underdamping or small damping. 

We know that the periodic time of vibration, 

and frequency of damped vibration, 

 
1 d 

 fd 
p  

2 
  . . . (vii) 

A2  B2
 

(n )
2  a2

2 m 
  2m 

1 s  c 2
 

 t



 

 

2m 

2m 
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Note : When no damper is provided in the system, then c = 0. Therefore the frequency of the undamped 
vibration, 

 

 
 
 
 

tions. 

fn 

. . . [Substituting  c = 0, in equation  (vii)] 

It is the same as discussed under free vibra- 

3. When the roots are equal (critical damping) 

  c  2 s 
If   

 
 , then the radical becomes 

m 

zero and the two roots k1 and k2 are equal. This is a 
case of critical damping. In other words, the critical 
damping is said to occur when frequency of damped 
vibration (fd) is zero (i.e. motion is aperiodic). This 
type of damping is also avoided because the mass 
moves back rapidly to its equilibrium position, in the 
shortest possible time. 

For critical damping, equation (ii) may be 
written as 

 
 

In a disc brake, hydraulic pressure forces 
friction pads to squeeze a metal disc that 
rotates on the same axle as the wheel. 

Here a disc brake is being tested. 
Note : This picture is given as additional information 
and is not a direct example of the current chapter. 

   c 
t
 

 
 c s 




x  (C1  C2) e 2m  (C1  C2) e nt 
... 


∵  

2m 


m 
 n 




Thus the motion is again aperiodic. The critical damping coefficient (cc) may be obtained by 
substituting cc for c in the condition for critical damping, i.e. 

 cc  
2 

s 
  
 


or cc 

 
 2m 

 
 2m n 

The critical damping coefficient is the amount of damping required for a system to be critically 
damped. 

 Damping Fa ctor or Damping Ratio 

The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc) is 
known as damping factor or damping ratio. Mathematically, 

 
Damping factor  

c 


cc 

c 
 

 

2m.n 

 
. . . (∵ cc  2.n ) 

The damping factor is the measure of the relative amount of damping in the existing system with 
that necessary for the critical damped system. 

 Logarithmic Decrement 
It is defined as the natural logarithm of the amplitude reduction factor. The amplitude 

reduction factor is the ratio of any two successive amplitudes on the same side of the mean position. If x1 

and x2 are successive values of the amplitude on the same side of the mean position, 

1 s 

2   m 

s 

m 

 

m



 

 

( ) n  
2  c 2 

 2m 

1  2m. 
 c 2 

 n 

(cc )
2  c2

 

s 

m 

80 103
 

200 

x



xn 






Example 23.9.  A vibrating system consists of a mass of 200 kg, a spring of stiffness       
80 N/mm and a damper with damping coefficient of 800 N/m/s. Determine the frequency of vibration 
of the system. 
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as shown in Fig. 23.18, then amplitude reduction factor, 

x1 

x2 

Aeat 

Aea (ttp ) 
 e

atp 

 

= constant 

where tp is the period of forced oscillation or the time difference between two consecutive amplitudes. As 
per definition, logarithmic decrement, 

  log 
 x1   log e

atp
  x   2 

or   log 
 x1   a.t  a  

2 



 


a  2

e   p 
  2  d 

 

. . .  

∵  d  


(n )

2  a2 


c 
 

 

 2m 

 
 2

. . .  ∵   a    
c 




c  2




 2m 

 2m  c  2
 c 

2
 

 (∵ cc  2m.n ) 

n cc 1  c 


 

2 c 

 c 


In general, amplitude reduction factor, 

x1  
x2  

x3 .... 
xn 

 

 eatp 

 
 

= constant 
x2 x3 x4 xn1 

 Logarithmic decrement, 

  log 
 xn   a.t 







2 c 
e   p 
 1 



Solution. Given : m = 200 kg ; s = 80 N/mm = 80 × 103 N/m ; c = 800 N/m/s We 

know that circular frequency of undamped vibrations, 

     
n = 20 rad/s 

(n )
2  a2

 

(cc )
2  c2

 





 

 

s 

m 

(n )
2  a2

 
e  x 

Example 23.10. The following data are given for a vibratory system with viscous damp- 
ing: 

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decreases to 0.25 of the 
initial value after five consecutive cycles. 

Determine the damping coefficient of the damper in the system. 
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and circular frequency of damped vibrations, 

d 

= 




 19.9 rad/s 

 (∵ a  c / 2m) 

 Frequency of vibration of the system, 

fd  d / 2 19.9 / 2 = 3.17 Hz Ans. 

Solution. Given : m = 2.5 kg ; s = 3 N/mm = 3000 N/m ; x6 = 0.25 x1 

We know that natural circular frequency of vibration, 
 

n   = 34.64 rad/s 
 

Let c = Damping coefficient of the damper in N/m/s, 

x1 = Initial amplitude, and 

x6 = Final amplitude after five consecutive cycles = 0.25 x1 (Given) 

We know that  
x1  

x2  
x3  

x4  
x5 

x2 x3 x4 x5 x6 

x x x x x x  x 
5
 

or  1  1  2  3  4  5   1 
x6 x2 

x  x 

x3 x4 

1/ 5 

x5 x6 

x 1/ 5 

 x2 

 
 1   1    1 

 (4)1/ 5  1.32 
x2  x6 

We know that 
 0.25 x1 


log 

 x1    a  
2

 2 


loge (1.32)  a 

Squaring both sides, 

2 
or 

(34.64)2  a2
 

 
0.2776 

a  2





0.077 

39.5 a2
 

1200  a2
 

 
or 92.4  0.077 a 

 
2  39.5 a2

 

 a2  2.335 or a = 1.53 

We know that a = c / 2m or c = a × 2m = 1.53 × 2 × 2.5 = 7.65 N/m/s Ans. 

1200  a2
 

(n )
2  a2

 (n )
2  (c / 2m)2

 

(20)2  (800 / 2  200)2
 

3000 

2.5 



 

 

(n )
2  a2

 

(cc )
2  c2
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Example 23.11. An instrument vibrates with a frequency of 1 Hz when there is no damping. 
When the damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz. 

  Find 1. the damping factor, and 2. logarithmic decrement.  

Solution. Given : fn = 1 Hz ; fd = 0.9 Hz 

1. Damping factor 
Let m = Mass of the instrument in kg, 

c = Damping coefficient 

or damping force per unit velocity 

in N/m/s, and 

cc= Critical damping coefficient in 
N/m/s. 

We know that natural circular frequency of undamped vibrations, 
Guitar 

n  2 fn  21  6.284 

and circular frequency of damped vibrations, 

rad/s 

d  2 fd  2 0.9  5.66 rad/s 

We also know that circular frequency of damped vibrations ( d ), 
 

5.66  

Squaring both sides, 

(5.66)2 = (6.284)2 – a2 or 32 = 39.5 – a2 

 a2 = 7.5 or a = 2.74 

We know that, a = c/2m or c = a × 2m = 2.74 × 2m = 5.48 m N/m/s 

and 
 
 

 Damping factor, 

cc  2m.n  2m  6.284 = 12.568 m N/m/s 

 
 

2. Logarithmic 
decrement 

c / cc  5.48m /12.568 m = 0.436 Ans. 

We know that logarithmic decrement, 

  
2 c  

2 5.48 m 

(12.568 m)2  (5.48 m)2 

 
34.4 

11.3 

 
= 3.04 Ans. 

 

 
Solution. Given : m = 8 kg ; s = 5.4 N/mm = 5400 N/m 
Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore 

Damping coefficient (actual), 

c = 40 N/m/s 

Example 23.12. The measurements on a mechanical vibrating system show that it has a 
mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness 

5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the 
mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic 
decrement, and 4. ratio of two consecutive amplitudes. 

(6.284)2  a2
 



 

 

s 

m 

(cc )
2  c2

 

x
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1. Critical damping coefficient 
We know that critical damping coefficient, 

 

cc   2m.n   2m   2 8 = 416 N/m/s Ans. 
 

2. Damping factor 
We know that damping factor 

 
 
 

3. Logarithmic 
decrement 

 
c 


cc 

40 
 

 

416 

 
= 0.096 Ans. 

We know that logarithmic decrement, 

  
2 c   

2 40 

(416)2  (40)2
 

 
= 0.6 Ans. 

 

4. Ratio of two consecutive amplitudes 
Let xn and xn+1 = Magnitude of two consecutive amplitudes, We 
know that logarithmic decrement, 

  log  xn  or  
 

xn  e  (2.7)0.6 = 1.82 Ans. 
 

 e  
  n1  xn1 

 

 
Solution. Given : fd = 90/min = 90/60 = 1.5 Hz We 
know that time period, 

tp = 1/fd = 1/1.5 = 0.67 s 
Let x1 = Initial amplitude, and 

x2 = Final amplitude after one 
complete vibration 

= 20% x1 = 0.2 x1 

 
 

Helical spring suspension of a 
two-wheeler. 

Note : This picture is given as 
additional information and is not a 

direct example of the current chapter. 
 

. . . (Given) 

We know that  

 log 

  x1   a.t  
 

 

 
or log 

 x1   a  0.67 
 

 e  x  
 p 

e  0.2 x 


  2   1 

 loge  5 = 0.67 a  or   1.61 = 0.67 a or  a = 2.4 . . . (∵ loge 5 = 1.61) 

Example 23.13. A mass suspended from a helical 
spring vibrates in a viscous fluid medium whose resistance 
varies directly with the speed. It is observed that the frequency 
of damped vibration is 90 per minute and that the amplitude 
decreases to 20 % of its initial value in one complete vibration. 
Find the frequency of the free undamped vibration of the 
system. 

5400 

8 



 

 

s 

m 

4000 

20 

 

 

n

Example 23.14. A coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at 
the free end. The motion is resisted by the oil dashpot. It is found that the amplitude at the beginning 
of the fourth cycle is 0.8 times the amplitude of the previous vibration. Determine the damping 
force per unit velocity. Also find the ratio of the frequency of damped and undamped vibrations. 
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We also know that frequency of free damped vibration, 

fd 

or (n )
2  (2 fd )

2  a2
 

 (21.5)2  (2.4)2  94.6 

 n  9.726 rad/s 

 
. . . (By squaring and arranging) 

We know that frequency of undamped vibration, 

fn  
n  

9.726 
  

= 1.55 Hz Ans. 
2 2

Solution. Given : s = 4 N/mm = 4000 N/m ; m = 20 kg 

Damping force per unit velocity 
Let c = Damping force in newtons per unit velocity i.e. in N/m/s 

xn = Amplitude at the beginning of the third cycle, 

xn+1 = Amplitude at the beginning of the fourth cycle = 0.8 xn 

. . . (Given) 

We  know that natural circular frequency of motion, 

 
n    14.14 

 

 
rad/s 

 

 and  x log  2 a 
e  xn 1 

or log 
 xn   a  

2
e  0.8 xn 



loge 1.25  a 

Squaring both sides 

 

 
2

200  a2
 

 
 

or 0.223  a 




2

200  a2
 

0.05  
a2  42 


200  a2

 

 a2
 

 
 

200  a2
 

0.05 × 200 – 0.05 a2  = 39.5a2 or 39.55 a2 = 10 

 a2 = 10 / 39.55 = 0.25   or a = 0.5 
We know that a = c / 2m 

 c = a × 2m = 0.5 ×2 × 20 = 20 N/m/s Ans. 

Ratio of the frequencies 
 

Let 
d 

f n1   = Frequency of damped vibrations =   
2

1 

2
(n )

2  a2
 

(n )
2  a2

 

(14.14)2  a2
 



 

 

(n )
2  a2

 

n 

s 

m 

30 103
 

75 

(n )
2  a2

 
e  x 

Example 23.15. A machine of mass 75 kg is mounted on springs and is fitted with a 
dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found 
that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations. 
Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash- 
pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the 
undamped vibration ; and 3. the periodic time of the damped vibration. 
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n 
fn2  = Frequency of undamped vibrations  =  

2



fn1   
d  

 2   
d       

(14.14)2  (0.5)2
 

   

fn2 2 n n 14.14 

. . .  ∵  d   (n )
2  a2 

= 0.999 Ans. 
 

Solution. Given : m = 75 kg ; s = 10 N/mm = 10 ×103 N/m ; x1 = 38.4 mm = 0.0384 m ; 
x3 = 6.4 mm = 0.0064 m 

Since the stiffness of each spring is 10 × 103 N/m and there are 3 springs, therefore total 
stiffness, 

s  310 103  30 103 N/m 

We know that natural circular frequency of motion, 

       20 
n 

 
1. Resistance of the dashpot at unit 

velocity 

rad/s 

Let c = Resistance of the dashpot in newtons at unit velocity i.e. in 

N/m/s, 

x2 = Amplitude after one complete oscillation in metres, and 

x3 = Amplitude after two complete oscillations in metres. 

 
We know that x1  

x2 

x2 x3 

 
 2 

 
 x x x x x   x  

2 
 

x1  
x1 

 
  

. . . ∵ 1  1  2  1  1   1     x3 x2 x3 x2 x2  x2  
 x2 


x 

x3 

 x 
1/ 2 

 


 0.0384 1/ 2

 

or  1   1 
    2.45 

x2  x3 

We also know that 

 0.0064 


log 

 x1    a  
2

 2 



 

 

(n )
2  a2

 


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loge 2.45  a 




2 

(20)2  a2
 

 
0.8951 

a  2 

400  a2
 

or 0.8  
a2  39.5 

400  a2
 

 
. . . (Squaring both sides) 

 a2 = 7.94 or a = 2.8 

We know that a = c / 2m 

 c = a × 2m = 2.8 × 2 × 75 = 420 N/m/s Ans. 

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration 
 

Let fn1 = Frequency of damped vibration = 
d

 
2 

n 
fn2  = Frequency of undamped vibration =   

2


fn1 d 2 d 
 

  

(20)2  (2.8)2
 

     f 2    20 = 0.99 Ans. 
n2 n n n 

3. Periodic time of damped vibration 
We know that periodic time of damped vibration 

 2  
2

d 
 

2

(20)2  (2.8)2
 

= 0.32 s Ans. 

 

 
Solution. Given : m = 7.5 kg 

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations, 

fn = 24/14 = 1.7 

and 

1. Stiffness of the 
spring 

n  2 fn  21.7  10.7 rad/s 

Let s = Stiffness of the spring in N/m. 

We know that (n )
2  s / m or s  (n )

2 m  (10.7)2 7.5 = 860 N/m Ans. 

2. Logarithmic decrement 
Let x1 = Initial amplitude, 

x6  = Final amplitude after five oscillations =  0.25 x1 ... (Given) 

x x x x x x  x 
5
 

 
 x x x x x 

 
 1  1  2  3  4  5   1  …∵ 1  2  3  4  5 
x6 x2 x3 x4 x5 x6 

Example 23.16. The mass of a single degree damped vibrating system is 7.5 kg and makes 
24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of 
vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the 
spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to 
critical damping. 

(n )
2  a2

 



 

 

 x2  
 
x2 

x3 x4 x5

 

x6 



 

 

(n )
2  a2
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x  x 1/ 5  x
 1/ 5 

or  1   1    1 
 (4)1/ 5  1.32 

x2  x6   0.25 x1 
We know that logarithmic decrement, 

  log 
 x1   log 1.32 = 0.28 Ans. 

 
 e  x   e 

 

3. Damping 
factor 

 2 

Let c = Damping coefficient for the actual system, and 

cc = Damping coefficient for the critical damped system. 

We know that logarithmic decrement (  ), 
 

0.28  a  2  a  2




0.0784 
a2  39.5 

114.5  a2
 

 
. . . (Squaring both sides) 

 
 

and 

8.977 – 0.0784 a2 = 39.5 a2 or a2 = 0.227 or a = 0.476 

We know that a = c / 2m or c = a × 2m = 0.476 × 2 × 7.5 = 7.2 N/m/s Ans. 

cc  2m.n  2  7.5 10.7 = 160.5 N/m/s Ans. 

 Damping factor = c/cc = 7.2 / 160.5 = 0.045 Ans. 

 Fre quency of Under Damped Forced 
Vibrations 

Consider a system consisting of spring, mass and 
damper as shown in Fig. 23.19. Let the system is acted upon 
by an external periodic (i.e. simple harmonic) disturbing 
force, 

Fx   F cos .t 

where F = Static force, and 

= Angular velocity of the 

periodic disturbing 

force. 

When the system is constrained to move in vertical 
guides, it has only one degree of freedom. Let at sometime t, 
the mass is displaced downwards through a distance x from 
its mean position. 

 
 
 
 
 
 
 
 

Fig. 23.19. Frequency of under 
damped forced vibrations. 

Using the symbols as discussed in the previous article, the equation of motion may be written 
as 

d 2 x dx m       . 


 

cos . 

dt2 
c s x   F t 

dt 

d 2 x dx m      . 


 

cos. 
or 

(10.7)2  a2
 



 

 

dt2 
c s x F t 

dt 
. . . (i) 



 

 

   

 
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This equation of motion may be solved either by differential equation method or by graphi- cal 
method as discussed below : 

1. Differential equation method 
The equation (i) is a differential equation of the second degree whose right hand side is some 

function in t. The solution of such type of differential equation consists of two parts ; one part is the 
complementary function and the second is particular integral. Therefore the solution may be written as 

x = x1  + x2 

where x1 = Complementary function, and 

x2  = Particular integral. 

The complementary function is same as discussed in the previous article, i.e. 

x1   Ceat cos (dt  ) 

 
 
 
 
 

. . . (ii) 

where C and  are constants. Let us now find the value of particular integral as discussed below : Let 

the particular integral of equation (i) is given by 

x2  B1 sin .t  B2 cos.t 

 
dx 

 B1. cos .t  B2.sin .t 
dt 

. . . (where B1 and B2 are constants) 

d 2 x    
 

 .2 sin .   .2 cos . 
and B1 

dt2 
t   B2 t 

Substituting these values in the given differential equation (i), we get 

m (B1.2 sin .t  B2.2 cos.t)  c (B1.cos .t  B2 .sin .t)  s (B1 sin .t  B2 cos.t)  

 F cos .t 

or (m.B1.2  c..B2  s.B1 ) sin .t  (m.2 .B2  c..B1  s.B2 ) cos .t 

 F cos .t 

or (s  m.2 ) B1  c..B2  sin.t  c..B1  (s  m.2 )B2  cos.t 

 F cos .t  0 sin .t 
Comparing the coefficients of sin t and cos t on the left hand side and right hand side 

separately, we get 

(s  m.2 )B1  c..B2  0 

 

. . . (iii) 

and c..B1  (s  m.2 )B2  F 
Now from equation (iii) 

(s  m.2 ) B1  c..B2 

. . . (iv) 

 
 B2 

s  m.2
 

c. 
B1

 

 
. . . (v) 

Substituting the value of B2 in equation (iv) 

.  . 
(s  m.2 ) (s  m.2 ) 

 c  B1  c.
 B1  F 



 

 

 
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c2 .2 .B1  (s  m.2 )2 B1  c..F 

B1 c
2.2  (s  m.2 )2   c..F 

 B1 
c..F 

 
 

c2 .2  (s  m.2 )2
 

 
and 

 
B2 

s  m.2 

c.
 

c..F 

c2.2  (s  m.2 )2
 

 

. . . [From equation (v)] 

 
F (s  m.2 ) 

c2 .2 (s  m.2 )2
 

 The particular integral of the differential equation (i) is 

x2  B1 sin .t  B2 cos.t 

 
c..F   sin .  F (s  m.2 )  cos . 

 
 

c2 .2  (s  m.2 )2  
 

t t 
c2 .2  (s  m.2 )2  

 

 
F c.sin .t  (s  m.2 ) cos .t 




 . . . (vi) 
c2 .2  (s  m.2 )2  

Let 
 



c. X sin ; and 
 
X  

s  m.2  X cos




. . . (By squaring and adding) 

 

 

 
This machine performs pressing operation, welding operation and material handling. 

Note : This picture is given as additional information and is not a direct example of the current chapter. 

c2.2  (s  m.2 )2
 



 

 

c2 .2  (s  m.2 )2
 

c2 .2  (s  m.2 )2
 

c2.2  (s  m.2 )2
 

c2 .2  (s  m.2 )2
 

c2 .2  (s  m.2 )2
 

 
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 and  tan   c. or   tan1  c. 




s  m.2
 

Now the equation (vi) may be written as 

 
s  m.2 


x2 




F 
 

 

c2 .2  (s  m.2 )2
 

F.X   

c2 .2  (s  m.2 )2 

X sin .sin t  X cos cost 


 cos (.t  ) 

 

 
F c2 .2  (s  m.2 )2

 

c2.2  (s  m.2 )2
 

 
 cos (.t  ) 

 
F 

 cos (.t  ) 
 

 The complete solution of the differential equation (i) becomes 
x = x1 + x2 

 C.eat cos (d .t  )  
F

  cos(.t  ) 
 

In actual practice, the value of the complementary function x1 at any time t is much smaller as 
compared to particular integral x2. Therefore, the displacement x, at any time t, is given by the 
particular integral x2 only. 

 x 
F 

 cos (.t  ) ... (vii) 
 

This equation shows that motion is simple harmonic whose circular frequency is  and the 
F 

amplitude is . 
 

A little consideration will show that the frequency of forced vibration is equal to the angular 
velocity of the periodic force and the amplitude of the forced vibration is equal to the maximum 
displacement of vibration. 

 Maximum displacement or the amplitude of forced vibration, 

xmax  
F

 
 

. . . (viii) 
 

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes 
place. 

2. The equation (viii) may be written as 

 
xmax 

F / s 

 
 

. . . (Dividing the numerator and denominator by s) 

c2.2  
(s  m.2 )2 

s2 s2 



 

 

c2.2 

s2 
 1 
 m.2 2 


 s 





c2.2 

s2 
 1 
 2 2 




 n ( ) 2 

s 

m 
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 
xo  

 
. . . (Substituting F/s = xo) 

 

where xo is the deflection of the system under the static force F. We know that the natural frequency of free 
vibrations is given by 

(n )
2  s / m 

xmax  
xo

 








. . . (ix) 

 
3. When damping is negligible, then c = 0. 

 
xmax  xo 2 

xo (n )
2 

( )2  2
 
 

xo  s / m 
( )2  2

 

 
  2 

 1 n n 

(n )
2
 

. . .  ∵  (n )  s / m



 
F 

 m (n )
2  2 


. . . ∵ F  xo.s  . . . (x) 

 

4. At resonance   n . Therefore the angular speed at which the resonance occurs is 

 
  n  rad/s 

 

 
and 

 

2. Graphical 
method 

xmax  xo 
s 

c.n 

 
. . . [From equation (ix)] 

The solution of the equation of motion for a forced and damped vibration may be easily 
obtained by graphical method as discussed below : 

Let us assume that the displacement of the mass (m) in the system, as shown in Fig. 23.19, 
under the action of the applied simple harmonic force F cos .t 
it can be represented by the equation, 

x  Acos (t  ) 

where A is the amplitude of vibration. 

Now differentiating the above equation, 

is itself simple harmonic, so that 

dx 
 .A sin (.t  )  .A cos90  (.t  )

dt 
d 2 x 

 2. cos(.  )  2. cos 180  (.  )and 
dt2 

A t A t 
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 Elastic force i.e. the

Disturbing force i.e. the force required to overcome the resistance of dashpot

and inertia force i.e. the force required to accelerate the mass 



 

 
 
 

force 

(a)

The algebraic sum of

F cos t . These forces

sents, to some suitable scale, the elastic force (of maximum value 

to the vertical. The vector OQ (of maximum value

m.2 A ) represents, to the same scale, the disturbing force and inertia force respectively. The vec
OP, OQ and OR are at successive intervals of 90°.

The projected lengths Op, 
time t and Os (the algebraic sum of 
applied force at the same instant. Thus the force vector 

OR or force F must be the vector sum of 
geometry of the figure, 

 

F 




 A (or xmax
 

 
tan 



and 

(od )2  (cd )2
 

(s  m.2 )2  c2.2
 

Machines 

the force required to extend the spring 

 s.x  s.Acos(.t  ) 

the force required to overcome the resistance of dashpot 

 c  
dx 

 c..A cos90  (.t  )
dt 

the force required to accelerate the mass m 

  
d 2 x 




.2. cos 180  (.  )
m 

dt2 
m A t 

  

(a) (b) 

Fig. 23.20. Graphical method. 

of these three forces at any given instant must be equal to the

forces are represented graphically in Fig. 23.20 (a). The vector OP

sents, to some suitable scale, the elastic force (of maximum value s.A), at an inclination (.t  

(of maximum value c.A ) and vector OR (of maximum value

) represents, to the same scale, the disturbing force and inertia force respectively. The vec
are at successive intervals of 90°. 

, Oq and Or represent the instantaneous values of these forces at
(the algebraic sum of Op, Oq and Or) must represent the value F cos 

applied force at the same instant. Thus the force vector OS must be the vector sum of OP, OQ 

must be the vector sum of s.A, c..A and m.2 .A , as shown in Fig. 23.20 (b). From 

F  oc  



max )  
F

 

 A 

 
. . . (Same as  before)

tan  
cd 





c..A  

c.2
 

 
 

od s.A  m.2 .A s  m.2
 

. . . (Same as before)

(oa  ad )2  (cd )2
 

(s.A  m.2.A)2  (c..A)2 (s  m.2 )2  c2.

the applied 

OP repre- 

 ) 

(of maximum value 

) represents, to the same scale, the disturbing force and inertia force respectively. The vec- tors 

of these forces at 
.t of the 

OQ and 

). From the 

. . . (Same as  before) 

. . . (Same as before) 

2
 



 

Chapter

 

It is the ratio of maximum displacement of the forced vibration (x
due to the static force F(xo). We have proved in the previous article that the maximum displace
ment or the amplitude of forced vibration,

xmax
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23.21. Relationship between magnification factor and phase angle for different values of 

 Magnification factor or dynamic

c .2 2 
 1

2 
2 

s2 
 n ( )2 

c2 .2
 

s2 
 1
 2 2 


 n ( )2 

 2c. 
2

  2 2 

 c n 
 c .   1

 n 
 ( ) 2 

x 
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 Magnific ation Fa ctor 
Magnifier 

maximum displacement of the forced vibration (xmax ) to the deflection 
We have proved in the previous article that the maximum displace

ment or the amplitude of forced vibration, 

max  o
 

Relationship between magnification factor and phase angle for different values of 

Magnification factor or dynamic magnifier, 

D  
xmax  

1
 

xo 

 
1 

 
 c. 2c. 2c.

. . . 
∵ 

s 

  s 2m( )2 

 2m 
 m 

n 

 

ctor or Dynamic 

) to the deflection 
We have proved in the previous article that the maximum displace- 

/ n . 

... (i) 

 
2c. 

2 
 

c . 


 c n 




 

 



1 

2 2 

 n ( ) 2 

• Theory of Machines 

The magnification factor or dynamic magnifier gives the factor by which the static deflection 
produced by a force F (i.e. xo) must be multiplied in order to obtain the maximum amplitude of the 
forced vibration (i.e. xmax) by the harmonic force F cos .t 

 xmax  xo  D 

Fig. 23.21 shows the relationship between the magnification factor (D) and phase angle 

for different value of / n and for values of damping factor c/cc = 0.1, 0.2 and 0.5. 

Notes: 1. If there is no damping (i.e. if the vibration is undamped), then c = 0. In that case, magnification 
factor, 

D  
xmax x 

1 
  

(n )
2 ( 

)2  2 
o n 

 

 

2. At resonance,  n . Therefore magnification factor, 

D  
xmax 
xo 

s 

c.n 
 

 
Depending upon the case bridges can be treated as beams subjected to 

uniformly distributed leads and point loads. 
 
 
 
 
 
 
 
 
 

Solution : Given. m = 300 kg;  = 2 mm = 2 × 10–3 m ; m1 = 20 kg ; l = 150 mm 

= 0.15 m ; c = 1.5 kN/m/s = 1500 N/m/s ; N = 480 r.p.m. or  2 480 / 60 = 50.3 rad/s 

Example 23.17. A single cylinder vertical petrol engine of total mass 300 kg is mounted 
upon a steel chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts 
of the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple 
harmonic motion. A dashpot is provided whose damping resistance is directly proportional to the 
velocity and amounts to 1.5 kN per metre per second. 

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of 
forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2. the speed of the 
driving shaft at which resonance will occur. 



 

 

c2 .2  (s  m.2 )2
 

s 

m 

1.47 106
 

300 

s 

m 
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1. Amplitude of the forced vibrations 
We know that stiffness of the frame, 

s = m.g /  = 300 × 9.81/2 × 10–3 = 1.47 × 106 N/m 

Since the length of stroke ( l ) = 150 mm = 0.15 m, therefore radius of crank, 

r = l / 2 = 0.15 / 2 = 0.075 m 

We know that the centrifugal force due to the reciprocating parts or the static force, 

F  m1.2.r = 20 (50.3)2 0.075 = 3795 N 

 Amplitude of the forced vibration (maximum), 

xmax  
F

 

 

 
3795 

(1500)2 (50.3)2  [1.47 106  300 (50.3)2 ]2
 

 

 
3795 

5.7 109  500 109
 

 
3795 

710103
 

 
 5.3103 m 

= 5.3 mm Ans. 

2. Speed of the driving shaft at which the resonance occurs 
Let N = Speed of the driving shaft at which the resonance occurs in 

r.p.m. 

We know that the angular speed at which the resonance occurs, 
 

        70 
n 

 
 N   60 / 2  70  60 / 2

rad/s 

 
= 668.4 r.p.m. Ans. 

 

 

Solution. Given : m = 10 kg ; s = 10 N/mm = 10 × 103 N/m ; 
 

Since the periodic force, Fx  F cos .t  150 cos 50 t , therefore 

Static force, F = 150 N 

and angular velocity of the periodic disturbing force, 

 50 rad/s 

x    
x1

 
5     10 

We know that angular speed or natural circular frequency of free vibrations, 
 

n  
10 103

 

10 

 
= 31.6 rad/s 

Example 23.18. A mass of 10 kg is suspended from one end of a helical spring, the other 
end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude 
to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of  
150 cos 50 t N is applied at the mass in the vertical direction, find the amplitude of the forced 
vibrations. What is its value of resonance ? 



 

 

(n )
2  a 2 

c2 .2  2  2 

s  (n ) 
2 

 1 2 

e  x 

x
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Amplitude of the forced vibrations 
Since the amplitude decreases to 1/10th of the initial value in four complete oscillations, 

therefore, the ratio of initial amplitude (x1) to the final amplitude after four complete oscillations (x5) is 
given by 

x x x x x  x 
4
  x x x x 

   1     1   2   3    4    1  . . . ∵
 1  2  3  4 

x5 x2 

 x  x 

x3 

1/ 4 

x4 x5 

  x 

 x2 

1/ 4 

 x2 x3 x4 x5 

 x 
   1      1    1   (10)1/ 4  1.78 . . . 

 
x5 

 1 
 x x x /10  10 


We know that 

2  5    1   


log 

 x1    a  
2

 2 


loge 1.78  a 
2 

(31.6)2  a2
 

 
or 0.576 

a  2

Squaring both sides and rearranging, 

39.832 a2 = 332 or a2 = 8.335 or a = 2.887 

We know that a = c/2m or c = a × 2m = 2.887 × 2 × 10 = 57.74 N/m/s and 
deflection of the system produced by the static force F, 

xo = F/s = 150/10 × 103 = 0.015 m 
We know that amplitude of the forced vibrations, 

 

xmax   o
 

 
 
 

 
0.015 

 
0.015 

(57.74)2 (50)2   50 2 2 0.083  2.25 

3 2 
 1   31.6   


(10 10  )     



 
0.015 

 9.8 103  m = 9.8 mm  Ans. 
1.53 

Amplitude of forced vibrations at resonance 
We know that amplitude of forced vibrations at resonance, 

x  x     
s
 

max 0     c.
10 103 

 0.015  0.0822 
57.54  31.6 

 
m = 82.2 mm Ans. 

 

 

Example 23.19. A body of mass 20 kg is suspended from a spring which deflects 15 mm 
under this load. Calculate the frequency of free vibrations and verify that a viscous damping force 
amounting to approximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion 
aperiodic. 

1000  a2
 

n



 

 

1 g 

2 

s  4m2
 

m 
4 s.m 

4  20  9.81  20 

0.015 

2m 

If when damped to this extent, the body is subjected to a disturbing force with a maximum 
value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion. 

Example 23.20. A machine part of mass 2 kg vibrates in a viscous medium. Determine the 
damping coefficient when a harmonic exciting force of 25 N results in a resonant amplitude of 
12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of frequency      
4 Hz what will be the percentage increase in the amplitude of vibration when damper is removed 
as compared with that with damping. 
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Solution . Given : m = 20 kg ;    = 15 mm = 0.015 m ; c = 1000 N/m/s ; F = 125 N ; 
f = 8 cycles/s 

Frequency of free vibrations 
We know that frequency of free vibrations, 

 
fn   1 9.81  = 4.07 Hz Ans. 

2   0.015 

The critical damping to make the motion aperiodic is such that damped frequency is zero, 
i.e. 

  c  2 
s 

  
 




 m.g 
 c    . . . ∵ s  

 
 


  1023 N/m/s 

 

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a viscous 
damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to make the 
motion aperiodic. Ans. 

Amplitude of ultimate motion 
We know that angular speed of forced vibration, 

  2 f  2 8  50.3 rad/s 

and stiffness of the spring, s = m.g/  = 20 × 9.81 / 0.015 = 13.1 × 103 N/m 

 Amplitude of ultimate motion i.e. maximum amplitude of forced vibration, 

xmax 




F 
 
 

125 

(1023)2 (50.3)2  [13.1103  20 (50.3)2 ]2 
 

125 125 


260010 6 1406106 
 

63.7103 
= 1.96 × 10–3 m 

= 1.96 mm Ans. 

Solution . Given : m = 2 kg ; F = 25 N ; Resonant xmax = 12.5 mm = 0.0125 m ; 
tp = 0.2 s ; f =4 Hz 

4  
m.g  m 


c2.2  (s  m.2 )2 

m 



 

 

c2.2  (s  m.2 )2

m 

s 

 

 

• Theory of Machines 

Damping coefficient 
Let c = Damping coefficient in N/m/s. We 

know that natural circular frequency of the exicting force, 

n  2/ t p  2 / 0.2 = 31.42 rad/s 

We also know that the maximum amplitude of vibration at resonance (xmax ), 

0.0125 


Percentage  increase  in 

amplitude 

F 

c.n 
 

25 

c  31.42 
 

0.796 

c 

 
or c = 63.7 N/m/s Ans. 

Since the system is excited by a harmonic force of frequency ( f ) = 4 Hz, therefore corre- 
sponding circular frequency 

 2 f  2 4  25.14 rad/s 

We know that maximum amplitude of vibration with damping, 

xmax  
F

 

 

 
25 

(63.7)2 (25.14)2  [2 (31.42)2  2 (25.14)2 ]2
 

 
. . . ∵ (n )

2  s / m or s  m(n )
2 

 

 
25 

2.56 106  0.5106
 

 
25 

1749 

 
 0.0143 m = 14.3 mm 

and the maximum amplitude of vibration when damper is removed, 

xmax 
F 

m (n )
2  2 

25 



2[(31.42)2  (25.14)2 ] 

25 
 

 

710 

 
= 0.0352 m 

= 35.2 mm 

 Percentage increase in amplitude 

 
35.2 14.3 

14.3 

 
 
 

= 1.46 or 146% Ans. 
 

 
Solution. Given : tp = 0.8 s ; y = 0.018 sin 2  t 
Let m = Mass hung to the spring in kg, and 

s = Stiffness of the spring in N/m. 
We know that time period of free vibrations (tp), 

m  0.8 2 

0.8  2 or 
s 
  2 

 0.0162 

Example 23.21. The time of free vibration of a mass hung from the end of a helical spring 
is 0.8 second. When the mass is stationary, the upper end is made to move upwards with a 
displacement y metre such that y = 0.018 sin 2  t, where t is the time in seconds measured from 
the beginning of the motion. Neglecting the mass of the spring and any damping effects, determine 
the vertical distance through which the mass is moved in the first 0.3 second. 



 

 

Chapter

If x metres is the upward displacement of mass 
seconds, the equation of motion is given by

d 2 
m  



dt

The solution of this differential equation is

 



Now when t = 0, x = 0, then from equation 

Again when t = 0, dx/dt 

Therefore differentiating equation 

dx / dt

or 7.85 Acos 7.85

 

Now the equation (i) becomes

 Vertical distance through which 
= 0.3 s), 

 
A little consideration 

unbalanced machine is installed 
vibration in the foundation. In order
to minimise the transmission of forces to the foundation, the 
machines are mounted on springs and dampers or on some 
vibration isolating material, as 
arrangement is assumed to have one degree of freedom, 
move up and down only. 

It may be noted that when a periodic (
harmonic) disturbing force F cos 

0.0162 0.0162 
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metres is the upward displacement of mass m from its equilibrium position after time
seconds, the equation of motion is given by 

2 x  


 (  ) 
m 
 

d 2 x 
     0.018sin 2


 

dt2 
s y x or 

s dt2
 

x y t 

The solution of this differential equation is 

x  Asin 
 

 t  B cos  t  
0.018sin 2t 

 

 2 
2

 
1   s / m 




 

. . . (where A and B are constants)

 Asin 
t
  B cos 

t
  

0.018sin 2 t 

1 42  0.0162 

 A sin 7.85t  B cos 7.85t  0.05sin 2t 

= 0, then from equation (i), B = 0. 

dt = 0. 

Therefore differentiating equation (i) and equating to zero, we have 

dt  7.85Acos 7.85 t  0.05 2cos 2t  0 

7.85t   0.05 2cos 2t 

. . . (∵ 

 A   0.05 2/ 7.85   0.04 . . . (∵ 

becomes 

x   0.04sin 7.85t  0.05sin 2 t 
 

. . . (∵ B = 0) . . . 

distance through which the mass is moved in  the first 0.3 second (i.e.  

  0.04 sin (7.85  0.3)  0.05sin (2 0.3) 

. . . [ Substituting t = 0.3 in equation 

  0.04  0.708  0.05  0.951  0.0283  0.0476  0.0193 m

= 19.3 mm Ans. 

 Vibration Isolation 
consideration will show that when an 

 on the foundation, it produces 
order to prevent these vibrations or 

to minimise the transmission of forces to the foundation, the 
machines are mounted on springs and dampers or on some 

as shown in Fig. 23.22. The 
arrangement is assumed to have one degree of freedom, i.e. it can 

It may be noted that when a periodic (i.e. simple 
 t is applied to a machine 

Fig. 23.22. Vibration isolation.

s 

m 

s 

m 

• 961 

from its equilibrium position after time t 

 

are constants) 

 . . . (i) 

∵ B = 0 ) 

∵ t = 0 ) 

. . . (ii) 

i.e.  when t 

= 0.3 in equation (ii)] 

m 

Isolation and Transmissibility 

isolation. 



 

 

D 

s 
s2  c2.2

 

1   
c 
 
 


 2c  
2

 

  c n 

 2c. 
2

 

 c n 
 

c .   1
2 2 

 n 
 ( ) 2 

o s 

• Theory of Machines 

of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring and 
the damper or dashpot to the fixed support or foundation. 

The ratio of the force transmitted (FT) to the force applied (F) is known as the isolation 
factor or transmissibility ratio of the spring support. 

We have discussed above that the force transmitted to the foundation consists of the fol- lowing 
two forces : 

1. Spring force or elastic force which is equal to s. xmax, and 

2. Damping force which is equal to c.  .xmax. 
Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore the 

force transmitted, 
 

FT 

 xmax 

 Transmissibility ratio, 
 

 
 

We know that 

 
FT   
F F 

 
F 

 
Fig. 23.23 

 
 

 F 
xmax  xo  D  

s 
 D . . .  ∵  x   

 


    D  
 
 

 c. 2c  
 D . . . ∵ s 

 
c 
 
 



 c n 

We have seen in Art. 23.17 that the magnification factor, 
 

D  
1

 

 
 
 
 

 
    

 
 
 
 
 

 
. . . (i) 

 
 

 
When the damper is not provided, then c = 0, and 

 

  1  

1 (/ n )
2

 

 
 
 

. . . (ii) 

(s.xmax )
2  (c..xmax )

2 

s2  c2.2
 

xmax s2  c2 .2 

c2.2
 

1
s2 

1  
 2c. 

2
 

 cc .n 


 2c. 
2

  2 2 

 c n 
 c . 

 1
 n 
 ( ) 2 



 

 

  

  

  

  

  

  

  

  

  

  

  

Chapter

From above, we see that when 

difference of 180° between the transmitted force and the disturbing force  

/ n must be greater than 2 if  
any phase difference between the forces that may exist which is important. It is therefore
convenient to use equation (ii) in 

Fig. 23.24 is the graph for different values of damping factor 

transmissibility ratio (  ) against the ratio 

1. When / n  , then all the curves pass through the point 

damping factor c/cc . 
 

  
 

 
Fig. 23.24. Graph showing the variation of transmissibility ratio.

2. When / n  2 , then 

force transmitted to the foundation through elastic support is greater than the force applied.

3. When /  n  2 , then 

the force transmitted through elastic support is less than the applied force. Thus vibration isolation

is possible only in the range of  /

2 

2 
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From above, we see that when / n  1,  is negative. This means that there is a phase 

difference of 180° between the transmitted force and the disturbing force  (F cos.t) . The value

 is to be less than 1 and it is the numerical value of  , independent of 
any phase difference between the forces that may exist which is important. It is therefore

 the following form, i.e. 

 
 1  

(/ n )
2 1 

 

Fig. 23.24 is the graph for different values of damping factor c/cc to show the variation of 

) against the ratio / n . 

, then all the curves pass through the point  = 1 for all values of

          

Graph showing the variation of transmissibility ratio. 

2 , then  > 1 for all values of damping factor c/cc. This means that

force transmitted to the foundation through elastic support is greater than the force applied. 

2 , then  < 1 for all values of damping factor c/cc. This shows 

the force transmitted through elastic support is less than the applied force. Thus vibration isolation

/ n  . 

•  

is negative. This means that there is a phase 

) . The value of 

independent of 
any phase difference between the forces that may exist which is important. It is therefore more 

. . . (iii) 

to show the variation of 

= 1 for all values of 

. This means that the 

 that 
the force transmitted through elastic support is less than the applied force. Thus vibration isolation 



 

 

Example 23.22. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted 
on five springs of negligible damping so that the force transmitted is 
force. Assume that the mass of the

Determine : 1. stiffness of each spring; 
operating speed; and 3. natural frequency of the 

• Theory of Machines

We also see from the curves in Fig. 23.24 that the damping is detrimental beyond

/ n  2 and advantageous only in the region 

vibration isolation, dampers need not to be provided but in order to limit resonance amplitude, stops 
may be provided. 

Solution.  Given  m1  =  120  kg ;
N = 1500 r.p.m. or  = 2 × 1500 / 60 = 157.1 rad/s ;

1. Stiffness of each spring 
Let 



We know that transmissibility ratio (
 



or (157.1)2  (n 
 

We know that 

Since these are five springs, therefore stiffness of each spring

2. Dynamic force transmitted to the base at the operating speed (i.e. 1500 
We know that maximum unbalanced force on the motor due to armature mass,

 
F 

 Dynamic force transmitted to the
 

F

3. Natural frequency of the 
We have calculated above that the natural frequency of the system,





The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted 
on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed 

the motor is equally distributed among the five springs. 

stiffness of each spring; 2. dynamic force transmitted to the base at the 
natural frequency of the system. 

Machines 

We also see from the curves in Fig. 23.24 that the damping is detrimental beyond 

and advantageous only in the region / n  2 . It is thus concluded that for the

vibration isolation, dampers need not to be provided but in order to limit resonance amplitude, stops 

=  120  kg ; m2  =  35 kg; r = 0.5 mm = 5 × 10 –4 m;  = 1 / 
× 1500 / 60 = 157.1 rad/s ; 

 s = Combined stiffness of the spring in N-m, and 

n = Natural circular frequency of vibration of the machine in rad/s.

We know that transmissibility ratio (), 

 1   1 
(n )

2 


(n )
2
 

 11   
2

 2  (n )
2
 (157.1)2  (n )

2
 

   1 
 n 

n )
2  11(n )

2
 or (n )

2  2057 or n  45.35 rad/s

n 

s  m1(n )
2  120  2057  246 840 N / m 

Since these are five springs, therefore stiffness of each spring 

= 246 840 / 5 = 49 368 N/m Ans. 

Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m. 
We know that maximum unbalanced force on the motor due to armature mass, 

F  m2 
2  r  35 (157.1)2 5 104  432 N 

Dynamic force transmitted to the base, 

FT  .F 
1 
 432  39.27 N 

11 

 
Ans. 

 system 
We have calculated above that the natural frequency of the system, 

n  45.35 rad/s Ans. 

s / m1 

The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The 
armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted 

eleventh of the impressed 
 

dynamic force transmitted to the base at the 

. It is thus concluded that for the 

vibration isolation, dampers need not to be provided but in order to limit resonance amplitude, stops 

= 1 / 11; 

= Natural circular frequency of vibration of the machine in rad/s. 

rad/s 

r.p.m. or 157.1 rad/s) 



 

 

Example 23.23. A machine has a mass of 100 kg and unbalanced reciprocating parts of 
mass 2 kg which move through a vertical stroke of 80 mm with simple harmonic motion. The 
machine is mounted on four springs, symmetrically arranged with respect to centre of mass, in 
such a way that the machine has one degree of freedom and can undergo vertical displacements 
only. 

Neglecting damping, calculate the combined stiffness of the spring in order that the force 
transmitted to the foundation is 1 / 25 th of the applied force, when the speed of rotation of ma- 
chine crank shaft is 1000 r.p.m. 

When the machine is actually supported on the springs, it is found that the damping reduces 
the amplitude of successive free vibrations by 25%. Find : 1. the force transmitted to foundation at 
1000 r.p.m., 2. the force transmitted to the foundation at resonance, and 3. the amplitude of the 
forced vibration of the machine at resonance. 
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Solution.  Given  :  m1  =  100  kg  ;  m2  =  2  kg  ;  l  =  80  mm  =  0.08  m  ;     =  1 / 25 ; 
N = 1000 r.p.m. or  21000 / 60 

Combined stiffness of springs 

= 104.7 rad/s 

Let s = Combined stiffness of springs in N/m, and 

n = Natural circular frequency of vibration of the machine in rad/s. 

We know that transmissibility ratio (  ), 

1  
 

1 
25   

2
 

 
(n )

2
 

2  (n )
2
 
 

(n )
2
 

(104.7)2  (n )
2
 

   
1 

 n 

or (104.7)2  (n )
2  25(n )

2
 or (n )

2  421.6 or n  20.5 rad/s 

We know that 



n 

s  m1 (n )
2  100  421.6 = 42 160 N/m Ans. 

1. Force transmitted to the foundation at 1000 r.p.m. 
Let FT = Force transmitted, and 

x1 = Initial amplitude of vibration. 
Since the damping reduces the amplitude of successive free vibrations by 25%, therefore final 

amplitude of vibration, 

 
We know that 

x2  0.75 x1 

 log  x1  





a  2 or log 

 x1  







a  2
e  x 

e  0.75x  


 2 

Squaring both sides, 

 1 

(0.2877)2 
a2  42

 

421.6  a2
 

or 0.083 
39.5 a2

 
 

 

421.6  a2
 

... 

    1    


∵   loge  0.75  
 loge 1.333  0.2877   

35  0.083 a2  39.5 a2
 or a2  0.884 or a = 0.94 

s / m1 

(n )
2  a2

 421.6  a2
 



 

 

1  
 2 188104.7 2 

 4100  20.5 

 2 188104.7 2 


 104.7 2 2
 

 4100  20.5   1  20.5  




    

1  c 
 2c 

2
 

 c 

 2c 
2

 
 
 cc 

1 0.0084 

• Theory of Machines 

We know that damping coefficient or damping force per unit velocity, 

c  a  2m1  0.94  2 100 = 188 N/m/s 
and critical damping coefficient, 

cc  2m.n  2 100  20.5 
 Actual value of transmissibility ratio, 

 
= 4100 N/m/s 

 

 

   
 
 
 
 

 
 





 
1.104 

 0.044 
25.08 

We know that the maximum unbalanced force on the machine due to reciprocating parts, 

F  m2 .
2 .r  2 (104.7)2 (0.08 / 2)  877 N . . . (∵ r = l / 2) 

 Force transmitted to the foundation, 

FT  .F  0.044  877 = 38.6 N Ans. ................. (∵  FT / F ) 

2. Force transmitted to the foundation at resonance 

Since at resonance,  n , therefore transmissibility ratio, 
 
 

     10.92 
0.092 

 
 

and maximum unbalanced force on the machine due to reciprocating parts at resonance speed n , 

F  m2 (n )
2 r  2 (20.5)2 (0.08 / 2)  33.6 

 Force transmitted to the foundation at resonance, 

N . . . (∵ r = l / 2) 

FT  .F  10.92  33.6 = 367 N Ans. 

3. Amplitude of the forced vibration of the machine at 
resonance 

We know that amplitude of the forced vibration at resonance 

 
Force transmitted at resonance 








367 

 
 
 
 8.7 103 m 

Combined stiffness 42 160 

= 8.7 mm Ans. 

1  
 2c. 

2
 

 cc .n 


 2c. 
2

  2 2 

 c n 
 

c . 


 1
 n 
 ( ) 2 

1 0.22 

0.22  629 

1  4100 
 2 188 2 

 

 4100 
 2 188 2 

 



 

 

 

∵ 

m 

 

 



Example 23.24. A single-cylinder engine of total mass 200 kg is to be mounted on an 
elastic support which permits vibratory movement in vertical direction only. The mass of the piston 
is 3.5 kg and has a vertical reciprocating motion which may be assumed simple harmonic with a 
stroke of 150 mm. It is desired that the maximum vibratory force transmitted through the elastic 
support to the foundation shall be 600 N when the engine speed is 800 r.p.m. and less than this at 
all higher speeds. 

1. Find the necessary stiffness of the elastic support, and the amplitude of vibration at 800 
r.p.m., and 

2. If the engine speed is reduced below 800 r.p.m. at what speed will the transmitted force 
again becomes 600 N? 
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Solution. Given : m1 = 200 kg ; m2  = 3.5 kg ; l = 150 mm = 0.15 mm or r = l/2 = 0.075 m ; 

FT = 600 N ; N = 800 r.p.m. or  2800 / 60 = 83.8 rad/s 

We know that the disturbing force at 800 r.p.m., 

F = Centrifugal force on the piston 

 m2 .
2 .r = 3.5 (83.8)2 0.075 = 1843 N 

1. Stiffness of elastic support and amplitude of vibration 
Let s = Stiffness of elastic support in N/m, and 

xmax = Max. amplitude of vibration in metres. 

Since the max. vibratory force transmitted to the foundation is equal to the force on the elastic 
support (neglecting damping), therefore 

Max. vibratory force transmitted to the foundation, 

FT = Force on the elastic support 

= Stiffness of elastic support × Max. amplitude of vibration 

 
= s × xmax 

 
 s 

F 
 

 

m 2  (n )
2 



 s 
F 

 
    2 s 




  
F.s 

m.2  s 

 
. . .  (n )

2 s 
m 

 
 

 600 

m     
 

1843 s 

200 (83.8)2  s 

 

1843 s 
 

 

1.4 106  s 

 


. . . (Substituting m = m1) 

 
 

 

* The equation (x) of Art. 23.16 is 

xmax 
 F 

 

m (n )
2  2 

Since the max. vibratory force transmitted to the foundation through the elastic support decreases at all 
higher speeds (i.e. above N = 800 r.p.m. or  = 83.8 rad/s), therefore we shall use 

xmax 
 F 

 

m 2  (n )
2 
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or 840 × 106 – 600 s = 1843 s 

 s = 0.344 × 106 = 344 × 103 N/m Ans. 
and maximum amplitude of vibration, 

 
xmax 

F 
 

 

m.2  s 
 

1843 

200 (83.8)2  344 103
 
 

1843 
m

 

1056 103
 

= 1.745 × 10–3 m = 1.745 mm Ans. 

2. Speed at the which the transmitted force again becomes 600 N 
The transmitted force will rise as the speed of the engine falls and passes through reso- nance. 

There will be a speed below resonance at which the transmitted force will again equal to 

600 N. Let this speed be 1 rad/s (or N1 r.p.m.). 

 Disturbing force, F  m2 (1 )
2 r  3.5 (1 )

2 0.075  0.2625 (1 )
2 N 

Since the engine speed is reduced below N1 = 800 r.p.m., therefore in this case, max, amplitude 
of vibration, 

 
xmax 

F 
 

 

m (n )
2  (1 )

2   
F 

m 
 s 

 ( )2 




 
F 

s  m (1)2
 

   m 1 


and Force transmitted = s 
F 

 

 

s  m (1)2
 

    3  0.2625(1)2
  

90.3103 (1)2
 

 
 

600   344  10 
344 103  200 ( )2 344 102  200 ( )2

 
1 1 

. . . (Substituting m = m1) 

206.4 106 120 103 (1 )
2  90.3103 (1 )

2 or (1)2  981 

 1  31.32 rad/s or N1  31.32  60 / 2 = 299 r.p.m. Ans. 

  EXERCISES  
1. A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end carries a flywheel  

of mass 1 tonne. Taking Young’s modulus for the shaft material as 200 GN/m2, find the natural 
frequency of longitudinal and transverse vibrations. [Ans. 200 Hz ; 8.6  Hz] 

2. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end together 
with a central load of mass 1000 kg. Calculate the frequency of transverse vibrations. Neglect the 
mass of the beam and take I = 109 mm4 and E = 205×103 N/mm2. [Ans. 13.8 Hz] 

3. A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m apart and carries a 
mass of 200 kg in the middle of the bar. Neglecting the mass of the bar, find the frequency of 
transverse vibration. 
If an additional mass of 200 kg is distributed uniformly over the length of the shaft, what will be 
the frequency of vibration ? Take  E = 200 GN/m2. [Ans. 17.8 Hz ; 14.6  Hz] 

4. A shaft 1.5 m long is supported in flexible bearings at the ends and carries two wheels each of 50 
kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 0.4 m from 
the centre towards right. The shaft is hollow of external diameter 75 mm and inner diameter 37.5 
mm. The density of the shaft material is 8000 kg/m3. The Young’s modulus for the shaft material is 
200 GN/m2. Find the frequency of transverse vibration. [Ans. 33.2 Hz] 
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5. A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported by two short 

bearings, the centre distance of which is 400 mm. Find the whirling speed : 1. neglecting the mass 
of the shaft, and 2. taking the mass of the shaft also into consideration. The density of shaft material 
is 7500 kg/m3. [Ans. 748 r.p.m.;  744 r.p.m.] 

6. A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It carries three discs of 
mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from the left hand. Assuming the mass of 
the shaft 190 kg/m, determine the critical speed of the shaft. Young’s modulus for the material of 
the shaft is 211 GN/m2. [Ans. 18.8 r.p.m.] 

7. A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is secured to a shaft at 
the middle of its length. The span of the shaft between the bearing is 0.5 m. The mass centre of the 
disc is 0.5 mm from the axis of the shaft. Neglecting the mass of the shaft and taking E = 200 
GN/m2, find : 1 critical speed of rotation in r.p.m., and 2. the range of speed over which the stress  
in the shaft due to bending will not exceed 120 MN/m2. Take the static deflection of the shaft for a 

 
Wl3 

beam fixed at both ends, i.e. 
192 EI 

. [Ans. 1450 r.p.m. ; 1184 to 2050 r.p.m.] 

8. A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carries a pulley 
of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm from the axis of the 
shaft. Find (a) the whirling speed, and (b) the bending stress in the shaft, when it is rotating at 1700 
r.p.m. Neglect the mass of the shaft and E = 200 GN/m2. [Ans. 3996 r.p.m  ; 12.1 MN/m2] 

9. A shaft 12 mm in diameter and 600 mm long between long bearings carries a central mass of 4 kg. 
If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute the maximum 
flexural stress in the shaft when it is running at 90 per cent of its critical speed. The value of 
Young’s  modulus of the material of the shaft is  200 GN/m2. [Ans. 14.8 kN/m2] 

10. A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and a dashpot of 
damping coefficient of 40 N/m/s. Find (a) damping factor, (b) logarithmic decrement, and (c) ratio 
of the two consecutive amplitudes. [Ans. 0.094 ; 0.6 ;  1.82] 

11. A body of mass of 50 kg is supported by an elastic structure of stiffness 10 kN/m. The motion of 
the body is controlled by a dashpot such that the amplitude of vibration decreases to one-tenth of its 
original value after two complete vibrations. Determine : 1. the damping force at 1 m/s ; 2. the 
damping ratio, and 3. the natural frequency of vibration. [Ans. 252 N/m/s ; 0.178 ; 2.214 Hz] 

12. A mass of 85 kg is supported on springs which deflect 18 mm under the weight of the mass. The 
vibrations of the mass are constrained to be linear and vertical and are damped by a dashpot which 
reduces the amplitude to one quarter of its initial value in two complete oscillations. Find : 1. the 
magnitude of the damping force at unit speed, and 2. the periodic time of damped vibration. 

[Ans. 435 N/m/s ; 0.27 s] 
13. The mass of a machine is 100 kg. Its vibrations are damped by a viscous dash pot which diminishes 

amplitude of vibrations from 40 mm to 10 mm in three complete oscillations. If the machine is 
mounted on four springs each of stiffness 25 kN/m, find (a) the resistance of the dash pot at unit 
velocity, and (b) the periodic time of the damped vibration. [Ans. 6.92 N/m/s ; 0.2 s] 

14. A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations 
is 35 seconds and the ratio of the first and seventh displacement is 2.5. Find (a) the stiffness of the 
spring, and (b) the damping resistance in N/m/s. If the oscillations are critically damped, what is the 
damping resistance required in N/m/s ? [Ans. 870 N/m ; 3.9 N/m/s ; 162 N/m/s] 

15. A mass of 5 kg is supported by a spring of stiffness 5 kN/m. In addition, the motion of mass is 
controlled by a damper whose resistance is proportional to velocity. The amplitude of vibration 
reduces to 1/15th of the initial amplitude in four complete cycles. Determine the damping force per 
unit velocity and the ratio of the frequencies of the damped and undamped vibrations. 

[Ans. 34 N/m/s : 0.994] 
16. A mass of 50 kg suspended from a spring produces a statical deflection of 17 mm and when in 

motion it experiences a viscous damping force of value 250 N at a velocity of 0.3 m/s. Calculate the 
periodic time of damped vibration. If the mass is then subjected to a periodic disturbing force 
having a maximum value of 200 N and making 2 cycles/s, find the amplitude of ultimate motion. 

[Ans. 0.262 s ; 8.53 mm] 
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17. A mass of 50 kg is supported by an elastic structure of total stiffness 20 kN/m. The damping ratio 
of the system is 0.2. A simple harmonic disturbing force acts on the mass and at any time t seconds, 
the force is 60 cos 10 t newtons. Find the amplitude of the vibrations and the phase angle caused by 
the damping. [Ans. 3.865 mm ; 14.93°] 

18. A machine of mass 100 kg is supported on openings of total stiffness 800 kN/m and has a rotating 
unbalanced element which results in a disturbing force of 400 N at a speed of 3000 r.p.m. Assum- 
ing the damping ratio as 0.25, determine : 1. the amplitude of vibrations due to unbalance ; and 2. 
the transmitted force. [Ans. 0.04 mm ; 35.2  N] 

19. A mass of 500 kg is mounted on supports having a total stiffness of 100 kN/m and which provides 
viscous damping, the damping ratio being 0.4. The mass is constrained to move vertically and is 
subjected to a vertical disturbing force of the type F cos  t. Determine the frequency at which 
resonance will occur and the maximum allowable value of F if the amplitude at resonance is to be 
restricted to 5 mm. [Ans. 2.25 Hz ; 400  N] 

20. A machine of mass 75 kg is mounted on springs of stiffness 1200 kN/m and with an assumed 
damping factor of 0.2. A piston within the machine of mass 2 kg has a reciprocating motion with a 
stroke of 80 mm and a speed of 3000 cycles/min. Assuming the motion to be simple harmonic,  
find : 1. the amplitude of motion of the machine, 2. its phase angle with respect to the exciting 
force, 3. the force transmitted to the foundation, and 4. the phase angle of transmitted force with 
respect to the exciting force. [Ans. 1.254 mm ; 169.05° ; 2132 N ; 44.8°] 

 
  DO YOU KNOW ?  

1. What are the causes and effects of vibrations ? 
2. Define, in short, free vibrations, forced vibrations and damped vibrations. 
3. Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations. 
4. Derive an expression for the natural frequency of free transverse and longitudinal vibrations by 

equilibrium method. 
5. Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations. 
6. Deduce an expression for the natural frequency of free transverse vibrations for a simply supported 

shaft carrying uniformly distributed mass of m kg per unit length. 
7. Deduce an expression for the natural frequency of free transverse vibrations for a beam fixed at 

both ends and carrying a uniformly distributed mass of m kg per unit length. 
8. Establish an expression for the natural frequency of free transverse vibrations for a simply sup- 

ported beam carrying a number of point loads, by (a) Energy method ; and (b) Dunkerley’s method. 
9. Explain the term ‘whirling speed’ or ‘critical speed’ of a shaft. Prove that the whirling speed for a 

rotating shaft is the same as the frequency of natural transverse vibration. 
10. Derive the differential equation characterising the motion of an oscillation system subject to vis- 

cous damping and no periodic external force. Assuming the solution to the 
equation, find the frequency of oscillation of the system. 

11. Explain the terms ‘under damping, critical damping’ and ‘over damping’ 
12. A thin plate of area A and mass m is attached to the end of a spring and is 

allowed to oscillate in a viscous fluid, as shown in Fig. 23.25. Show that 

  
m

 
A 

where the damping force on the plate is equal to .A.v ; v being the velocity. Fig. 23.25 

The symbols  and d indicate the undamped and damped natural circular frequencies of 

oscillations. 
13. Explain the term 'Logarithmic decrement' as applied to damped vibrations. 
14. Establish an expression for the amplitude of forced vibrations. 
15. Explain the term ‘dynamic magnifier’. 
16. What do you understand by transmissibility ? 

2  (d )
2 
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  OBJECTIVE  TYPE QUESTIONS  
1. When there is a reduction in amplitude over every cycle of vibration, then the body is said to have 

(a) free vibration (b) forced vibration (c) damped vibration 

2. Longitudinal vibrations are said to occur when the particles of a body moves 

(a) perpendicular to its axis (b) parallel to its  axis 

(c) in a circle about its  axis 

3. When a body is subjected to transverse vibrations, the stress induced in a body will be 

(a) shear stress (b) tensile stress (c) compressive stress 

4. The natural frequency (in Hz) of free longitudinal vibrations is equal to 

 
(a) 

 
(d) any one of these 

where m = Mass of the body in kg, 

 
(b) 

 
(c ) 

0.4985 

 

s = Stiffness of the body in N/m, and 

 = Static deflection of the body in metres. 

5. The factor which affects the critical speed of a shaft is 

(a) diameter of the disc (b) span of the shaft 

(c)   eccentricity (d) all of these 

6. The equation of motion for a vibrating system with viscous damping is 

d 2 x  c  
dx  s  dt2 

x 0 
m    dt m 


1 s 

2   m 

1 g 

2    



 

If the roots of this equation are real, then the system will be

(a) over damped (b) 

7.  In under damped vibrating system, if x1 and x
mean position, then the logarithmic decrement

(a)  x1/x2 (b) log (x1/x2) 
8. The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known

(a) damping factor 

(c)  logarithmic decrement 

9.  In vibration isolation system, if  / n  is less than

transmissibility will be 

(a) less than unity (b)   equal to unity 

  = Circular frequency of the system in rad/s,

n = Natural circular frequency of vibration of the system in rad/s.
10. In vibration isolation system, if /n > 1, then the phase difference between the transmitted force  and the 

disturbing force is 

(a) 0° (b)  90° 
 

ANSWERS
1. (c) 2. (b) 3. (b

6. (a) 7. (b) 8. (d

 

real, then the system will be 

 under damped (c) critically damped 

x2 are the successive values of the amplitude on the same side of
decrement is equal to 

 (c) loge  (x1/x2) (d) log (x1.x2) 
The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known

 (b) damping coefficient 

 (d) magnification factor 

less than 2 , then for all values of the damping factor, the 

 (c)  greater than unity (d) zero where

rad/s, and 

= Natural circular frequency of vibration of the system in rad/s. 
1, then the phase difference between the transmitted force  and the 

 (c) 180° (d) 270° 

ANSWERS 
b) 4. (d) 5. (d) 

d) 9. (c) 10. (c) 

GO To FIRST 

of the 

The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as 



 

 
 

UNIT-V 
GOVERNERS 

 
Introduction 

 

The function of a governor is to regulate the mean speed of an engine, when there are variations in the load 

e.g. when the load on an engine increases, its speed decreases, therefore it becomes necessary to increase the supply   

of work- ing fluid. On the other hand, when the load on the engine decreases, its speed increases  and thus less  

working fluid is required. The governor automatically controls the supply of working fluid to the engine with the 

varying load conditions and keeps the mean speed within certain limits. 

A little consideration will show, that  when the load increases, the  configuration of the governor  changes  

and a valve is moved to increase the supply of the working fluid ; conversely, when the load decreases, the engine 

speed in- creases and the governor decreases the supply of working fluid. 

Note : We have discussed in Chapter 16 (Art. 16.8) that the func- tion of a flywheel in an engine is entirely different from that of 

a governor. It controls the speed variation caused by the fluctuations of the engine turning moment during each cycle of 

operation. It does not control the speed variations caused by a varying load. The varying demand for power is met by the 

governor regulating the supply of working fluid. 

 
 
 

Types of Governors 

The governors may, broadly, be classified as 

1. Centrifugal governors, and 

2. Inertia governors. 
 
 

 

 
Centrifugal Governors 

The centrifugal governors are based on the balancing of centrifugal force on the rotating balls by an  equal  

and opposite radial force, known as the controlling force*.It consists of two balls of  equal  mass,  which  are 

attached to the arms as shown in Fig. 18.1. These balls are known as governor balls or  fly  balls. The balls  

revolve with a spindle, which is driven by the engine through bevel gears. The upper ends of the arms are pivoted to 



 

 
 

the spindle, so that the balls may rise up or fall down as they revolve 

about the vertical axis. The arms are connected by the links to a sleeve, 

which is keyed to the spindle. This sleeve re- volves with the spindle ; 

but can slide up and down. The balls and the sleeve rises when the 

spindle speed increases, and falls when the speed decreases. In order to 

limit the travel of the sleeve in upward and downward directions, two 

stops S, S are provided on the spindle. The sleeve is  connected  by a  

bell crank lever to a throttle valve. The supply of the working fluid de- 

creases when the sleeve rises and increases when it falls. 

When the load on the engine increases, the engine and the 

governor speed decreases. This results in the decrease of centrifugal 

force on the balls. Hence the balls move inwards and the sleeve moves 

down- wards. The downward movement of the sleeve  operates  a 

throttle valve at the other end of the bell crank lever to increase the 

supply of working fluid and thus the engine speed is increased. In this 

case, the extra power output is provided to balance the increased load. 

When the load on the engine decreases, the engine and the governor 

speed increases, which results in the increase of centrifugal force on 

the balls. Thus the balls move outwards and the sleeve rises upwards. This upward movement of the sleeve reduces   

the supply of the working fluid and hence the speed is decreased. In this case, the power output is reduced. 

 
 



 

 

 
 

Terms Used in Governors 

The following terms used in governors are important from the subject point of view ; 

1. Height of a governor. It is the vertical distance from the centre of the ball to a point where the axes of the arms 

(or arms produced) intersect on the spindle axis. It is usually denoted by h. 

2. Equilibrium speed. It is the speed at which the governor balls, arms etc., are in complete equilibrium and the 

sleeve does not tend to move upwards or downwards. 

3. Mean equilibrium speed. It is the speed at the mean position of the balls or the sleeve. 

4. Maximum and minimum equilibrium  speeds. The speeds at the maximum and minimum radius of rotation 

of the balls, without tending to move either way are known as maximum and mini- mum equilibrium speeds 

respectively. 

Note : There can be many equilibrium speeds between the mean and the maximum and the mean and the mini- mum equilibrium 

speeds 

5. Sleeve lift. It is the vertical distance which the sleeve travels due to change in equilibrium speed. 



 

 
 
 

 



 

 
 
 
 

 



 

 
 
 

 



 

 
 
 
 

 



 

 
 
 
 
 

 



 

 
 
 
 

 



 

 
 
 
 

 



 

 
 
 
 
 

 



 

 
 
 
 

 



 

 

 


